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PREFACE

This book is concemed with a systematic investigation of the concept of
"measure-free” conditioning and its associated logic for intelligent systems. Its purpose is
to provide a foundation for inference in such systems. The basic problem is the
representation and evaluation of implicative statements in patural language, in a way
compatible with conditional probability. This longstanding problem involves three distinct
disciplines: natural language, logic, and probability. The results are organized in book
form here for the first time.

Two audiences are in mind, Artificial Intelligence researchers who are primarily
interested in reasoning under uncertainty in intelligent systems, and mathematicians in the
fields of probabilistic modeling, and logic. This diversity of audience requires that some
sections be tutorial and elementary in nature.

Specifically, this work bridges the gap between numerically based probabilistic
conditioning and the logic underlying implicative statements in natural language. This
problem has been addressed in the past, for example, by Boole, DeFinett, Koopman,
Copeland, Schay, and Adams. Those efforts are incomplete, perhaps because of lack of
motivation by real world problems. In any case, work in this field has gone unrecognized
by the mainstream of researchers, particularly the work of Schay in 1968 on the algebra of
conditional events, which remains almost totally uncited in the literature.

The sitation is different today. The problem is before us because of the need to
provide a firm foundation for probabilistic reasoning in intelligent systems; in partcular,
how to combine conditional information arising from disparate sources in expert systems
and how to compute it probabilistically. This is in line with the Bayesian approach to
probabilistic reasoning in intelligent systems (Pearl, 1988). Probability not only has a firm
mathematical foundation, but also the conditional probability operator captures a form of
non-monotonicity of common sense reasoning.

Our goal is a more complete and satisfactory theory of "measure-free” conditioning.
If the concept of “conditional event” can be formalized and a suitable algebra of uperators
between such events be developed, then the resulting structure will have use in designing
inference rules in expert systems. With probability being the method of choice for
handling uncerizinty despite the plethora of non-probabilistic procedures such as

Dempster-Shafer belief functions and Zadeh's fuzzy sets, it is natural to develop a logic of




A [.. -:J [ A, Neo 1054

oy
[TLTeTRey

C.'.T?.'S.

viii Preface

conditional events logic compatible with conditional probabilities. However, the basic
work here can be adapted and extended in various directions, such as to the fuzzy set
setting (Chapter 7), as well as to the Dempster-Shafer belief function setting (see, for
example, Dubois and Prade (1588)). This development is not to be confused with other
"conditional logics", such as that of Nute (1980) and Appiah (1985), which are not
compatible with conditional probability, nor with non-commutative extensions of Boclean
logic (Guzman and Squier, 1990). Our approach differs also from that of Adams (1975),
who takes conditionals as primitives in natural language, while ours are mathematcal
entities.

This book is primarily concemed with theory. The reader is expected to be familiar
with basic probability theory, elementary logic, and elementary facts from ring theory.
However, the text is largely sclf-contained. The hope is that this book will trigger further
interest in both the theory and applications of this topic.

In conducting the rescarch leading to this Monograph, we have benefited from
discussions with various people. In particular, acknowledgements are expressed to Dr.
Philip Calabrese for his thought provoking treatise on measure-free conditional events
(Calabrese, 1987), and the lengthy personal communications evchanged on the topic.
Thanks are extended to Professors Geza Schay of the University of Massachusetts at
Boston, Kevin Hestir and Gerald Rogers of New Mexico State University, and to David
Stein of the Naval Ocean Systems Center at San Diego.

The first named author expresses his appreciation for support by Dr. Ralph Wachter
of the Office of Naval Research, Dr. Alan Gordon of the Independznt Research Office,
NOSC, and the backing by the line management of the Naval Ocean Systems Center, in
partcular John A. Salamann, Jr.. and Michael C. Mudurian, both of the Command and
Control Department.

The other two named authors extend their thanks to their department head, Professor
Carol Walker, for her encouragement.

Finally, we are grateful to Valerie Reed for performing an excellent job in typing
this manuscript.

1. R. Goodman H. T. Nguyen and E. A. Walker
San Diego, California Las Cnices, New Mexico
March 10, 1990 March 10, 1930
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CHAPTER 0
INTRODUCTION

In this Introduction, we outline the motivation and objectives, as well as the main
contributions to the theory of measure-free conditioning.

0.1 Motivation and objectives

This work addresses an anomaly involving probability and logic relative to the
interpretation of implicative statements, and the evzluation of those statements compatible
with conditional probability. One of our chief motivadons is the need to formalize
rigorously the connections between conditional probability and the "hidden" logic of
implicative staternents, such as production mules in expert systems and defauits in
cornmon-sense reasoping. The purpose is to provide theoretical results for probabilistic
reasoning that will be usefu! in the design and evaluation of inference rules of such
systeros.

We now descrive the basic problem in some detail. Within the context of
logic-based formal methods in artificial intelligence, the space of propositions (facts,
evidence, information, and so on) is represented by an algebraic structure R known as a
Boolean algebra. The basic connectives among propositions, namely negation,
conjunction, and disjunction comespond to operators on R, dencted ‘, A, and V,
respectively. When elements of R are uncerain, as is often the case in expert systems,
classical two-valued logic has to be replaced by probability logic, in which probabilities
play the role of truth values. However, our knowledge often contains uncertain
conditional information of-the form "if b then a", where @ and b are elements of R. These
conditional propositions are referred to as implicative statements, or conditionals. In
expert systems, these are “production rules”. In order to make inferences from this type of
knowledge, it is necessary to develop an appropriate logic in which these conditionals can
be represented and manipulated in order to combine evidence, and in which an entailment
relation can be formulated. A quantitative approach to this starts with the quantification
of the strength or the "truth” of conditionals. For example, if the conditional "if b then a"
is written in the language of Boolean logic, then one can model it by material implication,
that is
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boa=b"Va.

If P is a probability measure on R, then P(b - a) = P(b’ Va) can be used as such a
quantification. However, it is more reasonable to quantify the conditonal "if b then a" by
the conditional probability P(a|b), which is clearly different from P(b” V a@). Indeed

P’ va)=P(b’ Vab) -
= 1 - P(b) + P(ab) # P(ab)/P(b).

While this is consistent with probability logic for unconditional propositons, that is, for
elements of R, one cannot represent the conditional "if b then 4¢" mathematcally.
Indeed, there is no counterpart of P(a|b) in logic. Logic lacks a conditioning operator
corresponding to conditional probability. Since material implication b - a is not
compasible with probability in the sense that

P(b - a) # P(a]b),

one might attempt to look for other operations f on R, Boolean or not, such that
P{f{a.b)] = P(a]b) for all probabilites P onRand all g, be R with b= 0. Such
attempts have been laid to rest by Lewis' Triviality Resulr. (See Chapter 1.) To model
“"measure-free” conditional events (a|b) compatible with conditional probability, one has
to go outside of R. Thus (a|b) cannot be so modeled as an ordinary proposition.

The first question then is to determine a suitable mathematcal entity R|R for
conditional events (a]b). Once such a model R |R is determined, for each probability P
on R, onehas P extended to a "semantic evaluaton” on R|R.

With the space R|R as the counterpart of R in the unconditional case, one then
proceeds to define connectives among conditionals, for example conjunctions

(if b thena) A (f d then ¢)

whose result is another condidonal in R[R. Such operations yield an algebra of
conditionals, extending the algebra of unconditional events of R. Choosing a correct
medel R}R for these condidonal events, and then choosing suitable logical operations on
those condijtinral events which extend those of R is the backbone of the problem. Once
such operations have been found, it is then possible to assign probabilities to compounds
of conditionals, since, for example, to evaluate

P[(f b then a) A (if d then ¢)],

onc merely has to carry out the operaion A between the two conditionals, yielding
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another conditional, and then evaluate P at that conditional. The algebraic structure of
R|R together with a probability on R extended to R|R forms the core for the
development of conditional probability logic extending that of i)robability logic.

In summary, the problem we are facing is this. For a Boolean algebra R(’, A, V),

(1) find a "measure-free” conditioning map f from R X R to some space R|R so
that P[f(a,b)] = P(a|b) defines a function on R|R extending P. onR;

(2) define logical operations “, A, ¥ on R|R extending the corresponding ones on
R, and : :

(3) with conditional probabilities as semantic evaluations, develop a conditional
probability logic with syntax {R|R, ’, A, V).

No satisfactory solution to the problem seems to exist, even in the vast numerically
oriented literature treating conditioning in probability and logic. A solution entails the
development of “conditional event algebras”, and lies outside the scope of conditional
probability literature. This aspect has been considered by only a handful of researchers,
with no concerted effort being made in that direction. In this monograph, we present a
solution to the problem in the form of a conditional events algebra that is new, rigorous,
comprehensive, a.d computationally tractable. The theory of measure-free condidoning
presented here can be used both as a basis for reating the problem of combining evidence
and as groundwork for further investigations into the connection between probability and
logic.

We now return to the topic of inference rules in expert and intelligent sysiems as
one of the main motivating sources for posing the basic problem mentioned above.
Automated reasoning in intelligent systems is based on logical entzilment (or logical
consequences or implication) in some logic. For example, in mechanical theorem proving
where first order logic is used, one of the usual ways to draw conclusions is through the
use of modus ponens, which simply says that if b implies a and b is ue, then a is tue.
This means that a follows logically from (b -+ a, b}, and this translates into the syntax of
first order logic as (b -+ a) A b < a. Note that here < is precisely the logical entailiment
relation of first order logic, and the modeling of "-", condidonal informaton of the form
"if b then a",is via material implication mentoned above.

The situation in reasoning under uncertainty is more complicated. First, the
knowledge base consists of conditional informadon which is not known with complete
certainty. Second, human common sense reasoning is basically “non-monotonic” in
nature, whereas first order logic is monotone. This mcans that onc can retract prior
conclusions in light of new evidence. From a logical non-numcrical appreach, the
modeling of "if b then a" should be investigated, and a2 non-monotonic logic for
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4 Introduction

"conditionals” should be found. A well known example is Reiter's (1980) logic of
defaults. If we want to treat uncertainty in conditional informnation in a more quantitative
way, various uncertainty measures could be used. The most popnlar numerical approach
is a Bayesian one, in which probabilities assigned to conditionals are conditional
probabilities. Suppose we symbolize conditional statements of the form "if b then @” or
“most b's are d's”, or "usually birds fly" by (a|b). Then the knowledge K is of the
form {(g|b;) : i = 1.2, ...n}, and the evidence is of the form E = (e;)izb___m, <.
Non-monotonic reasoning is a logical entailment in 2 non-monotonic logic whose basic
objects are of the form (a|b). Note that the elements of E can be identified as (e,-lQ).
Instead of trying to model (a|b) as a mathematical endty compatible with conditional
probability (as a counterpart of non-conditional prepositions with respect to uncondional
probability), a well known approach (for example, Pearl, 1988) is to rely upon the

_ so-called Adams' logic of conditionals (Adams, 1975), in which conditionais are not

modeled mathematically, but are taken as primidves in our nawmal language, and the
probability entzilment relaton 3 is defined semantcally. The lack of a conditioning
operator in logic is mentioned in many places in Pearl’s book. Moreove:, if a
mathematical object (a]b) could be defined, many problems in Adams’ book could be
clarified. It is interestiag to note that in 1968 Shay published 2 paper providing a proposal
for such an object (a|b) and its algebra. Definitely, if objects like (a|d) can be
defined, then we can bridge the gzp between probability zand logic and reasoning can be
carried out at the syntax Ievel providing that conditional information can be combined.
Thus the goal is to develop a theory of "conditonal events”™ compatiblc with
conditional probability, analogous to the role piayed by boolean algebra in the theory of
unconditional evenis and unconditonal probability. Perfiaps by the very nature of
physical sysiems and statistical problems, the new concept of conditional events might not
contribute anyihing new to them. This might explain why the papers by Copeland
published in the Proceedings of the Berkeley Symposium on Mathematical Statistics and
Probability (1945,1954), or by Schay (1968) have been largely ignored. This is similar to
the case of quanium probability for quantum mechanics but not for erdinary probability
models (Gudder, 1988). The need fer defining mathematically (measure-free) conditional
events appears also in the Theory of Measwemen: (Pfanzagl, 1971, Chapter 12). But
uniike Copeland’s 2pproach, P{anzag! proposed 1o use cosets of Boolean rings to represent
conditional events. However, his analysis was restricted only 1o each fixed (Boolean)
quoiient ning. so that the algebrzic stucture of the space of all possible coseis was not

invesugated. In paricular, inference from a collection of conditional events with different
antecedents was not formulaied. But, as we will see in Chapier 2, the coset form for
conditional evenis is a correct one, and this will be derived axiomarically.
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0.2 State-of-the-art

The mathematical problem that we try to analyze in this book has been examined
over several decades, but is apparently foreign to probabilists as well as to engineers.
Most of the results were published in a scattered, unorganized fashion. However, there are
two books on the subject: those of Adams (1975) and Hailperin (1976), which are in logic.
See also the book of Pfanzagl (1971, Chapter 12). -

Prior to the era of Al, the problem came independently to the attention of the
logicians Stalnaker (1968) and Lewis (1976), and as well as to Van Fraasen (1976),
Copeland (1941, 1945, 1950, 1954), Koopman (1940, 1941), and DeFinetti (1974). While
the discussion of the subject within the logic community remains somewhat active,
perhaps because of its philosophical nature, there was no reaction at all in the probability
and statistics community. This is exemplified by the largely forgotten Copeland's papers
which aimed at providing more basic structures for probability theory and statistics,
complementing Kolmogorov's model. The framework that he proposed, that of
implicative Boolean algebras, was unsatisfactory, being far too restrictive, and examples
and applications were not readily at hand.

At the folklore or unpublished level, all of the attempts to deal with this problem
have been shown to be either patently wrong - such as identifying the probability of
material implication with conditional probability, or combining antecedents with only
union or intersection of anteccdents being taken, or using a too restricive or
computationally unfeasible approach (see Chapter 1).

The conditional event "literature” consists of only a couple of dozen papers as
opposed to the vast conditional probability literature. Within this meager output, most
researchers have reached the point where they have agreed that conditional events should

e identified as principal ideal cosets of events of the original Boolean algebra of events.
One exception is Copeland and his colleagues, who used the "implicative" Boolean
algebra approach. But this required the original Boolean algebra to be infinite and of a
very special sort. Indeed, an "implicative” Boolean algebra R must be isomorphic to R/I
for all principal ideals I (Copeland and Harary, 1953a).

Except for Domotor (1969), Pfanzagl (1971) and Calabrese (1987), no justification is
proffered by those even proposing cosets of principal ideals as models for conditional
events. On the other hand, Hailperin postulated that a conditional event should be an
element of a Chevalley-Uzkov ring of fractions of a Boolean ring, whose elements he then
shows are identifiable with cosets of principal ideals of the original Boolean ring. Thus he
could have skipped the ring of fractions step, cosets being a simpler notion. The idea is
not so bad: given two elements a and b of a ring, with b # 0, form a larger ring in
«hich a/b makes sense, that js, in which a is divisible by b. The notion is to model
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6 Introduction

the-conditional event (a|b) by the element a/b. For Boolean rings, this cannot be done.

trying to "divide" elements of Boolean rings results in trivialities. For example, in the

larger ring,
abb(a/b) = aba = ab = ab(a/b) = aa = a.

But ab is not necessarily a. Further, using more general "rings of quotients” will also lead
nowhere. (See Section 1.2 for more details.)

Among the few who have attempted to define operations among conditional events
with different antecedents - the identical antecedent case being similar to the
unconditional case - only Schay (1968) has justified his choice of (two proposed systems
of)-operators, and that indirectly through an abstract characterization theorem. (See Schay
(1968), Theorem 5.) However, these operators are chosen initially on an empirical basis,
and the characterization theorem appears more as an ad hoc rather than a natural avenue
for supporting them,

It will be pointed out in Chapter 3 that both pairs of Schay's conjunction and
disjunction operators - and hence Calabrese's operators since they coincide with one
system of Schay's, violate the min-conjunction and max-disjuncdon and related
monotonicity properties of probability. Up to now, no one has derived operations on
conditional events from first principles, and related explicitly the coset form of conditional
events to their potential operations. Even further, except for some of Mazurkiewicz's
rudimentary results (see Section 1.4), no connecticns have been established between the
coset form and conditional probability assignment of conditional events.

As we will see, there has been a proliferation of definitions for conditional events
and of operations between them. This is due perhaps to the fact that each approach is
based simply on some intuitive idea or some mathematical analogy rather than a
systematic analysis of the problem from basic concepts, or a more axiomatic approach.

In summary, up to now no satisfactory first-principles approach has been taken
toward the exposition of a theory of conditional events. Our goal is such a theory.

0.3 Outline of main contributions

With the motivation and objectives described above, our effort will be directed first
toward the development of a mathematically rigorous and comprehensive theory of
measure-free conditioning.  Specifically, a conditioning operator compatible with the
probabilistic conditioning operator is introduced into logic. The whole machinery of
Boolean logic is extended to “conditional Boolean logic”. With this conditional Boolean
logic as syntax, the associated conditional probability logic will extend classical
probability logic. (See Hailperin (1984) and Nilsson (1986).) Since conditional

o

°
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probability logic-is a Jagic for implicative propositions (such as defaults in common sense
fegjéoning; and productions rules in-expert systems), our work makes more rigorous, and
goes beyond, that of Adams -(1975). Further, it clarifies theoretical issues in algebrzic
logic in the new direction of ‘non-monotonic logics for AJ. The mathematical setting of
our conditional extension of first-order logic is an algebraic structure extending the
Boolean ring of first order logic, but is not itself a ring. This is however compatible with-
the goal of achieving non-monotonicity in probability reasoning, more fundamental
structures surrounding the theory of -probability must be investigated, as has-been pointed
out by Grosof (1988) and Pearl (1988). Thus, structures more general than Boolean rings

‘must be allowed. This situation is somewhat analogous to that of quantum logic (Gudder,

1988). This need to consider more general algebraic structures can also have some
interes: for algebraists. For example, corrbining cosets of different quotient rings of a-

~ Boolean ring is possible in a natural way, and the resulting algebraic structure merits.

attendon. The generality in which this phenomenon holds is not clear, although it does-
extend, for example, to commutative von Neumann regular rings. (See Chapter 8.) A
related question of interest here which arises is to characterize commutative partially
ordered rings in which cosets of principal ideals are intervals.

The theory of conditioning developed in this book can be used to design inference

rules in intelligent machines. Details of these applications to AI should be investigated.

At this point, we give some flavor of the theory. We begin by recalling the basics of
Adams' logic of conditionals (Adams, 1975), which has been popularized in the Al

community by Pearl (1988). Since uncertain implicative propositions in natural language

form the core of human and machine knowledge used in reasoning and inference, a logic
of these propositions, called conditionals, needs to be developed.

The main thrust of Adams' work is the development of a logic of conditonals,
compatible with conditional probability, that is, probabilities of conditionals are taken to
be conditional probabilities. See also (Stalnaker, 1968, 1970) and (Lewis, 1976). In
classical two-valued logic, the basic structure is a Boolean algebra R of subsets of a
universe of discourse 2. Thus propositions (events) are represented as mathematical
entities, namely as elements of R. From this, semantics, or truth values are attached to the
"possible worlds”. However, Adams, apparently unaware of most of the previous work on
the subject, especially that of Shay (1968), took conditionals, as generalizations of
ordinary events, as primitives in natural language, rather than some entity generalizing
elements in a Boolean ring. (It is interesting to speculate on what Adams' book would be
like had he known of Schay's work of 1968.) Thus in Adams' conditional extension of
classical logic, the collectons of conditionals exist only as a formal mathematical
structure.  However, as human beings, we understand this primitive concept of
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conditionals, and hence, as in classical logic, proceed to build more complicated
conditionals from the simple ones via logical connectives “and", "or", "not", and so on.
Now, these "conditional" connectives are extensions of those in ordinary unconditional

propositions. As in any extension problem, the solution is not unique. Any proposed

extension of the logical operations for conditionals forms only one possible logic amongst
all the possible ones. Adams proposed the following ones (1975, pp.46-47). Write "if b
then @" as a|b. He made the following definitions, perhaps based on intuitive grounds:

(a|b)’ =(a”|b);
(a|lb) Ac|d) =((b" Va) A(d V)| Va);
@by Vic|d)=WaAb)V(cAd)|®Va).

These turn out to be precisely Schay's operations (Schay, 1968), which will be discussed
in Chapter 3.

The problem with assigning probabilities to compounds of conditionals is discussed
using Lewis' triviality result, which says that one cannot model conditionals as elements of
the Boolean ring R, compatible with conditional probability (Adams, pp. 34-35; Lewis,
1976). Precisely, it says that one cannot associate with "if b then a" an element ¢(a,b) of
R so that for all probability measures P on R,

P(qXa,b)) = P(a|b) = P(ab)/P(b).

There are some trivial exceptions. A proof of this fact will be reproduced in Chapter 1.
This means that the mathematical entity modeling conditionals must properly contain R.
This modeling of conditionals is the main thrust of this book.

Another point in Adams' work is his concept of "probabilistic entailment” (Adams,
1975, pp. 56-57). Since reasoning in intelligent systems is based on a logical entailment
relation in a given logic, it is not surprising that Pearl (1988) popularized Adams' work
because of this concept only. This concept of entailment is particularly suitable for
plausible reasoning in a quantitative way, that is, for conditionals (a|b) in which P(a|b)
is high, such as "birds fly". Let K = {(g|b):i=1,2,..,n}. Then, by definition, K
implies (c|d) if for each £> 0, thereisa &> 0 such that for any probability measure
P on R, if P(a;|b)>1-8 then P(c|d) > I - & In Chapter 6, we will return to this
concept to discuss its practical role in automated reasoning, especially in situations
different from plausible reasoning, as well as in the computational aspects of conditional
probability logic.

Now consider the problem of assigning a probability to a compound statement of the
forn S="if b then a orif d thenc", where a, b, ¢, and d are in R. To do that, we




- - . J_— iy ey ey
) C:: L....n Ventrrd e 4

Meeend

- 7 aani s+ | aaasnen ) Provessl
‘ T

* ova
“yvesaral

Outline of main contributions 9

need to model the statemcent "if b then g" so that its probability is P(a|b) and then we
must define the connective V (or) appropriately. The hope is that § will again be of the
form "if e then f*, and P(S) = P(e|f). By Lewis' triviality result, "if b then a" cannot
be an element of R, so we are led to look outside R for a model. (See Chapter 2.) In
Chapter 3, conditional connectives are derived from algebraic considerations, and in
particular, the connective V is derived under reasonable assumptions to be

(@|b) v (c|d) = ((ab V cd)|(ab V cd V bd)), .

where ab means the intersection or conjunction of @ and b, and a Vb means their
union or disjunction. This operator corresponds to Lukasiewicz's three-valued truth table
for disjunction.

Another important issue is that of non-monotonic probabilistic reasoning in
intelligent systems. Its framework is as follows. Let T =< K,E >, where K is a
knowledge base and E is a set of evidence. K consists of a collection of implicative
propositions symbolized as (g;|;), i = 1, 2, 3, ..., n. For example, in the "penguin

triangle" example (Pearl, 1988), these are defaults. Note that in the Bayesian approach,

where the uncertainty in these defaults is taken into account in a more quantitative way, a
default rule of the form "most a's are b's" is modeled semantically as P(a|b) is "high".
E is a collection of factual propositions (evidence). Since elements in E can be viewed'
as implicative statements which are implied by the tantology T (true), the reasoning
process will involve a logical entailment relation $ in a conditional logic. Conditionals
of interest are of the form (c|E), where E stands for the Booiean conjunction of all
elements in E, and ¢ is some event of interest. It is desired to know whether (c|E)
follows logically from K. In the case of the penguin triangle example, the e-semantics of
Adams can be used (Pear], 1988, Ch. 10). It is necessary to be able to handle production
rules in expert systems rather than just defaults in plausible reasoning, and also to treat the
problem at a syntactic level as in the case of classical first-order logic, where 3 is simply
the order relaton < in a Boolean ring. Stll this must be done compatible with
conditional probability evaluations. The main problem is the representation of K as a
whole. Putting all (uncertain) information in K together can be done in two different
ways: internal and extemnal. If implicative propositions (g,|b,)) can be represented as
legitimate quantities, as we do in this book, and if logical operatons among them are
available, then an internal combination of informatios in K consists simply as taking
conjusctions of all the (g;|d;). An external combination strategy would consist of
forming a "product” of the (g;|b). (See Chapter 3 for details.) To complete the
reasoning procedure, a logical entailment relation 3 in conditional logic needs o be
supplied. It turns out that the order structure of Boolean rings can be extended suitably to




10 Introduction

: l ' provide the desired 3. Moreover, relative to E, that is, to additional facts or evidence, 3
’ is non-monotonic. (See Chapter 8.)
j In summary, we first justify the coset form for measure-free conditional events by
[ using an axiomatic approach. A systematic investigation of logical operators among
conditionals, including those with different antecedents, is then carried out, resulting in a
( space of conditional events. Realizing that conditionals have three possible truth values, a
systematic study of three-valued logics leads to the conclusion that systems of logical
F operators among conditionals correspond precisely to various systems of three-valued
” logics. A conditional probability logic is formulated, extending classical probability logic.
— r In a direction of generalization, we devote a chapter for conditioning in a fuzzy setting.
J

) I : 0.4 Overview of the book

In view of the state-of-the-art presented above, we have looked again at the problem
- in the last several years (Goodman, 1987, Goodman and Nguyen, 1988). The present
' book is based essentially on our earlier unpublished work "A Theory of Measure-Free

¢ Conditioning” (1987). Some of the results have already appeared in print, and 2r¢ here
f__é augmented by new and improved procedures. In our view, it is not too early to provide a

comprehensive presentation of the theory of measure-free conditioning. It is our hope that
this book will stimulate further basic research in this area.

The basic program consists of nine parts:
# (1) Formulation of the conditional event problem (Chapter 0).

& (2) Extensive literature review pointing up the lack of a systematic investigation of
- the problem (Chapter 1).

(3) Derivation of the necessary form that a conditional event must take, namely that

Z of a coset of a principal ideal in a Boolean aigebra of events (Chapter 2).

(4) Derivation of the appropriate operations on conditional events and development
of the calculus of these operations and the partial order extending the usual subset
1} relation of ordinary events, together with a justification of the proposed conditional
logic via three valued logic (Chapter 3).

I (5) Establishment of relevant algebraic properties and a characterization of the
i algebra of conditional events, and an extension of the Stone Representation Theorem
to this conditional setting (Chapter 4).

(6) An analysis of the assignment of conditional probability to conditional events
(Chapter 5).
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(7) The development of conditional probability logic whose algebraic structure is
the conditional event algebra (Chapter 6).

(8) The generalization of results to fuzzy events (Chapter 7).

(9) The investigation of iterated conditioning, and miscellaneous issues (Chapter 8).
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CHAFTER 1
A SURVEY OF PREVIOUS WORK ON CONDITIONAL EVENTS

As stated before, investigations of conditional events and their operations have a
iong history, but are not well known among probabilists, logicians, and compuicr
scientists, who make up a good deal of the Al community. Our lizesature search revcaled
that the topic has been considered, independently and at infrequent intervals of time, by
logicians and mathematicians, dating back to an idea in Boole's book (1854). Below we
present the main approaches that have been taken, as well as duplications of effort that
have been made. As we will sze, throughout the development of the mathematical theory
of conditional events and their calculus, there has been a proliferation of definitions of
these objects and of operations among them. This is due to the fact that each approach
has been based upon some intuitive idea or some analogy, rather than a systematic
analysis from a first principles or axiomatic approach. An axiomatic approach - which we
take here - should not only justify rigorously the comrect forms for conditional events, but
should also shed light o.. the ones investigated so far. In the same vein, a reasonable
conditional logic should be able to be defended axiomatically. See Chapters 2 and 3.

1.1 Implicative Boolean algebras and Lewis' triviality result

The first approach considered for modeling conditional events is that of Copei..al
{1941, 1945, 1950). See also Copeland ané Harary (1953a, 1953b), Balbes (1970), and
Jonsson (1954).

Let R be a Boolean ring and let -+ be material implication, that is, b + a is the
element &' VE’ If P is a probability measure on R, then in general

P(b -+ a) # P(a|b). (1)

The simple-appearing expression in (1) belies an interesting and significant history. First,
it can be improved as follows.

Pt -a)=P(b’ Va)=P®b’ Vab)
= P(b’) + P(ab) = P(b") + P(a| b)P(b)

=P®’) + P(a|b)[I - P(b"))
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= P(a|b) + P(")I - P(a]b)]
= P(a|b) + P(5")P(a’ |b) 2 P(a]b), @

with equality holding if and only if P(a’b) =0 or P(}) = 1, a rather trivial case.

Popper (1963, p. 390, formula 22) was among the first to recognize a form of (2)
although earlier in 1956, Copeland (p. 42) implicitly used the inequality as a springboard
for his implicative Boolean algebra work. Calabrese independently recognized (2) in 1975
and later in 1987 (p. 201), motivating his development of conditional events outside of
the Boolean algebra of unconditional events R. It is tempting to seek another operation ¢
on R such that P(a0b) = P(a|b), that is, a binary operation ¢ on R such that P(alb) =
P(a|b) is well defined. In other words, one would like to know whether "conditional
events”" can be modeled as ordinary events, that is, as elements of R. It turns out that,
except for trivial cases, the answer is negative (Lewis, 1976; Adams, 1975). Later
Calabrese (1987), unaware of Lz »is' so called "triviality result"”, showed, using the normal
disjunctive form of Boolean polynomials, that such a ¢ could not be Boolean, that is,
expressible in terms of union, intersection, and complement. Copeland proceeded directly
to the search for such a ¢, and consequently only obtained trivial cases. We now discuss
Lewis' Triviality Result, and then outline Copeland’'s work on implicative Boolean
algebras.

Theorem 1 (Lewis' Triviality Result). Let R be a Boolean ring with more than four
elements. Then there is no binary operation ¢ on R such that for all probability
measures P on R,andall a,b in R with P(b) >0,

P(a0b) = P(a]b).

Proof. Suppose ¢ exists. For a probability measure P on R and an element
re R with P(r) # 0, denote by Pr be the probability measure on R given by
Pr(x)=P(rx)/P(r). Now, if @ and b arein R and P(ab)# 0 P(a’b), then a and b
are P-independent. Indeed, since P(a), P(a’), and P(b) are all positive, we have

P(a|b) = P(adb)
= P((a0b)a) + P((adb)a’)
= P((a0b)|a)P(a) + P((a0b)|a’)P(a’)

= P (a0b)P(a) + P ,(a0b)P(a’)

=P a(alb)P(a) + Pa,(alb)P(a’)

®
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= (P (@b)IP 6)P(@) + (P 1, (ab)/P . (B))P(a’)
=P@) +0
= P(a).

Since R has more than four elements, then we can find @ 'and » in R such that
ab#0#a’b. Indeed,let b bein R,b#1,andlet ae R with a#b’. ¥ ab=0, then
a<b and ab#0#a’b’. ¥ ab#0, then ab# 0#a’belse b<a. Inany case, we
have elements a and b of R with ab#0#a’b and b# 1. By Stone's Representation
Theorem, R is a subalgebra of the algebra £(2) of all subsets of some set . Let x,y
and z be elements of Q suchthat xe ab,ye a’b and z¢ b. Let P be a probability
measure on  P(2) with P({x}) = P({y}) = P({z}) = 1/3. Then P is a probability
measure on R such that P(ab) # 0 # P(a’b). Now P(a|b) = 1/2 while P(a) =2/3 or
1/3, depending on whether or not ze a. Thus P(a|b) # P(@), and ¢ cannot exist. o

The proof above is based on Lewis' original proof (Lewis, 1976). If R has four or
fewer elements, then the reader may verify easily the existence of a ¢ satisfying the
condition in the theorem.

As a simple example when such a ¢ does not exist, let Q={x,y,z} and R= 2
(). Define P by P(x)=P@y)=P(@)=1/3. Let a={x} and b={x,y}. Then
P(ab) # 0 # P(a’b), and P(a|b) =2/3, while P(a) = 1/3. Of course, this is essentially the
construction at the end of the proof just given.

When R is finite, there is another approach to Lewis' Triviality Result. If an
operation ¢ on R existed satisfying P(a0b) = P(a|b), then P(a|b) can have no more
than #(R) values, where #(R) denotes the number of elements of R. This is simply
because a0b 1is an element of R. Thus, to prove Lewis' Triviality Result, it suffices to
construct on R a probability measure P such that P(a|b) takes more than #(R)
values. We will do a bit more.

Theorem 2. Let Q2 be a finite set, and let R be the Boolean algebra of all subsets of Q.
If Q has n elements,n >0, and P is any probability measure on R, then there are no
mo>2 than 3n - 271 + 3 possible values for P(a|b). Further, then there is a probabiliiy
measure P on R suchthat P(a|b) takes on 3n - 2w+l + 3 distinct values.

Proof. Since P(a|b) = P(ab)/P(b), to get the number of possible values of P(a|b)
not 0 or I, we simply have to count the number of pairs (a,b) in R, that is, the number
of pairs (a,b) of subsets of Q, with 0 <a < b. But this is the number
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) 2’1‘ @m-2)2)=(3n-1)2Qn-I)=3n-204 + ],

and the first part of the theorem follows.

If p is any bounded measure on R, then P = u/u(Q) is a probability measure on
R, and P(a|b) = P(ab)/P(b) = p(ab)/i(b). We will prescribe a bounded measure g on
R such that distinct pairs (a,b) of elements with 0 <a<b give distinct p(@)/u(d). A
measure is prescribed on R by assigning to each of its singletons, that is to each element
of £, a positive number. We will have the desired measure, then if there are n positive
numbers o, 0, ..., 0, sachthatif I,J,K,and L are subsetsof {1,2,...,n} with
dclcJ and $cKclL, o is the sum of those o with iel, and (7, J) # (K, L), then
ofo # aK/aL. This construction is relagated to the following lemma. o

Lemma 1. Let n> 0. Then there exist positive numbers &, 09, . . ., 0, such that if I,
J,K,and L are subsetsof {I1,2,...,n} with clfcJ and $cKclL, o&isthesum
of those o with iel,and (I,J)# (K, L), then ozllozJ # Oﬁc/al.'

Proof. We get the desired «'s inductively. Let ¢ be any positive number greater
than I. (There is some convenience in having «; > I1.) Having chosen o4, 0, . ..,
0.1, for 1 <i<n, let o be a positive number with such that

o>+ +...+ 0%

For example, if «; is taken to be 2, then o, may be taken to be greater than (2)2 = 4,.
If taken to be 5, say then ¢ then may be taken to be greater than (0o + )2 = (2 + 52
=49, and so on. Note that oy < 0 <. .. < a,. Now suppose that ozl/ocJ = aK/aL, with
the 1,7, K, and L having the properties noted above. Let m be the largest index such
that m is in one of the sets I, J, K, and L, and is not in all four. There is such an m
because (I,J) #(K,L). Let s= Zi > %
really only three distinct cases to consider:

which is 0, of course, if m = n. There are

(@) m isin I,J,and L, and is notin KX;
®) mis J and L,andisnotin [ or K
(¢c) m isin J andnotin I or X or L.

Case (a) is the case that m is in exactly three of the sets; case (b) is the case that m isin
exactly two of the sets, and case (c) is the case that m is in exactly one of the sets.
Write O =U+Qn+s Or U+s, depending on whether ornot m e I. Then o=utv+
O+ 5, since me J in all three cases. The number u is just L o;, where i€ and
i <m. This number may be 0. Now v =} o, where ieJ,i <m,and i¢]. Similarly,

o, =X+, since we never have to consider the case where m € K, and finally,

C )
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o =x+y+On+ts or x+y + 5 depending on whether or not m € L. An important
point is that u,v, x, and y are sums of aj's for some I's <m, so are small relative to
o, and to s,if s> 0.

Suppose that we are in case (a), and that a:ljczI = aKI(zL. This gives

U+ aqp+)U+v+0p+s)=T+)E+Yy+ 0n+5)
whence

Wrop+s)x+y+op+s)=U+v+ag+s)x +59).
This equality yields

S0t - v +Y) + Uy + utty + yor + (@2 =xv

This is impossible. All the terms on the left are 20, and ()2 > xv since

o> (O + 0 +. ..+ @ g)22v.
In case (b), we have the equality

§u+s)/(u+v+am+s)=(x+s)/(x+y+am+s),
which yields
s - V) =x(0m+ V) - u(0m +5)-

The left side s(y - v) must be 0. Otherwise,

s#£0#ly-v>1,
and

(o, + V) - (o + I < (g + o + . . . + 052 < Oy <sly - vl

But if s(y-v)=0, then

05X - ) = uy - xv,

whence x = u, from which it follows that y = v. But this means that /= K andJ =L.
which is not the case.
In case (3), we have the equality

W+su+v+on+s)=x+s)(x+y+s),
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which yields
s(On+V-Yy)=uwy-vx -x0

If s> 0, the left side is positive, and the right side is negative unless x = 0. In this case
s(e,+v-y)>uy since s>+ +...+ )2 >uy. If s=0, then x0,=uy - vx,
sox=0. But then K =¢, which is not allowed. . o

There are a couple of comments that should be made about getiing the desired
in the proof of Theorem 2. First, it is clear that they can be chosen to be integers, in
which case the resulting probability measure will have all rational values. Secondly, that
such o exist is no problem. Taking the o to be algebraically independent (over the
rational numbers) will get the desired distinct P(a|b). Being algebraically means tht
there is no non-trivial polynomial f with rational coefficients such that flog, o, - - - ,
a)=0. If ozljozJ = oleczL for some (I.J) #(K,L), then oo - oL is a non uivial
polynomials in the ¢'s, andis 0. That such algebraically independent sets exist is a welt
known algebraic fact. A good reference is Hungerford (1974, page 311).

An immediate corollary of Theorem 2 is Lewis' Triviality Result for those R that
are the algebra of all subsets of a set with atleast 3 elements. Indeed, in that case

32204 +3 > 20,

and since there is a probability measure P on R such that P(a]b) takes 32 - 2n+i +3
distinct values, there is no binary operation ¢ on R such that P(a0b) = P(a]b) foralla
and & in R.

Now suppose that R is any Boolean algebra with g clements, g >4. Then R isa
subalgebra of the algebra P(Q) of all subsets of a finite set Q with at least three
elements. As we have seen, there is a probability measure P on P(QQ) taking distinct
values P(a]|b) not 0 or I for every pair (a,b) with 0 <a <b. The reswiction of P
to R is a probability measure on R, and taking b =1 yields ¢ distnct values for
P(a|b), counting 0 and 1. As in the proof of Lewis' Triviality Result 2bove, there are
elements @ and b in R with ab#0+a’b,aad b= 1 Thus P(ab|b) is yet another
value, yielding more than g values of P(a|b) for elements @ and b of R. This
implies Lewis” Triviality Result for any finite Boolean algebra with n:ore tkan four
elements. It is not clear how our theorem can be used to prove Lewis’ Triviality Result for
infinite R.

The theorem also shows that if R is the algebra of all subsets of 2 set with n
clements, then any model S of the space of conditional events that is compatible with
probability must have at least 37 - 2ol + 3 elements, ard if R s any finite Boolean
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algebra such a model 1ust be larger than R.

The key fact in all the above is the existence of a probability measure P on the
Boolean algebra of all subsets P(Q) of a finite set Q. The existence of sucha P isa
trivial consequence of the existence of algebraically independent real numbers, as we have
noted. To actually construct a measure, as we did in the lemma, yielding the desived
probability involved a bit of arithmetic, but an elementary prescription was given for the
nurobers needed.

Following is an alternate proof of the existence of such a probability measure on
these special finite Boolean. algebras. It may have some independent interest. We are
going to show that if R = £(Q), with Q finite, then there is a Po on R such that Po
is one-to-one on the set

{(a,b):0+a<ba beR},

that is, whenever @# a; < b], /s a, < bz and (al, bI) # (a,, bz), then we have
Po(a ]lbl) #P 0(a2|b2). We will carry out the proof of this by induction on #(SQ).
Specifically, we are going to show that, for each n 2 I, there is a probability measure P,
on Rn = .9(Qn), where Qn = {wI, vy con], such that

#(P (a|b):a,beR P (b) >0} = gn_on+l o

For n=1, QJ={co1], and R1=[Q5, coj}. Let P1=8 X that is, PI(@)=0,
PI(“’I)= 1. We have
#(Pyalb):a=0 0, b=0)=2=3-2"+3.

For n=2, 92 = {co], wz}, and RJ = {0, w,, @y, {0,, coz}}. Denoting as usual
the Dirac mass point probability at @ by & , let P, = (1/3)6w + (2/3)60) . We have
1 2

{(a, D) :0#a < b) = {(0), (@], @}, (@, {@), @,)))

and
P,@|o)) = P,@|w,) = Pyw;|w,) = P2(w2|co1)
= P,0|{0;, ,)) = 0
Py(w;] @) = Pylwy|@)) = Py({w, @y} |{e), 0,)) =15

Py | (@), @) = 13 #2/3 = Po(wy | {0, 0,)).
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Pz(alb):a,beR,b;éﬁ}=4=32-23+3. 0

Note that P 0 Pz are both one-to-one on R I RZ’ respectively, and take rational values in
[0, 11. '
Assume that up to n, there is Pn :Rn -+ [0, 1] of the form

= ¥%n
P, 25:1 (rJ/sn)S j,

where the rj's are distinct positive integers,

=)0 r,
Sn 2j=1 T
such that

#(P @|b):a,beR b2} =3"- 2" 43,

Consider Qn+1 = {col, S 0)n+_,}. Define

= . . Cead
Pn+1(wj)”"j/5,,+1»J—I,...,n+ 1; sn+1"2?:1"j’ )
and Toil is to be determined. Let 0¢a1<bl,g¢az<b2 and .

a;, a, bJ, b2 € Rn+1’ (al, bl) =/=(a2, bz) .
Now
Qn+1 = (bIsz)ub}bé.

If a)n_*_]eb}bz’,then a)n_*_]eai,bi,i:I,Z; and

P 1@lb) =P, @)P b= ini:e a) rj)/({j:m?e b) g

=Pn(ai|bi) ,i=1,2.
Thus, by hypothesis of induction,
Py1@|bp) # Py 1@p]B))
when
mn+1 € b}bZ !

P

for any choice of integer 1, , different from the rj’s,j =12, ..,n
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Consider next the case where @, 1€ b 1Y b2. A partiton of b I b2 is
{a;a5,a Ja;.;bZ' a Ib.;.’ a}b 19 a}b 152 a}b Ibé' b}az, b}aébzl .

To express the fact that @, 1€G Or @ ¢a,wewrite

o ey
[ S—

remntore
L

a=a0VA 10 g .

for A‘., 7= Qn +] OF @, respectively. Similarly

with

Define

and

We have

Thus

bi=bigVA;i 5@ . p

ai,O’ bi,O € Rn.

_{1 f A=,

2 J
Q. = )y r
] . k?
{k.cokea i,O}

Bl = E rk .
{k:wkEbi,O}

Phr1@|0) =P 1@)P, b))

[Pn+1(ai,0) + 11',1Pn+1(a)n+])]
Tpn-l»l(bi,y*' 'ti,ZPn+1@n+l)]

= [0y + 7 pr B + 7 or 1)

P, 1@lbp) =P, 1@a,]b))

if and only if Tntl satisfies

**)

where

B

2

A n+l

+Brn+I+C=0

A=T11%2 T12%]

=Ty 00 + 7 1Py - 100 - 1By
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C =0, -ayb; . .)

Our proof will be complete if for each pair (a 7 b 1), (a2, b2) the coefficients A, B,
C cannot be all zero, since then either A #0 or B # 0, and hence the quadratic equation
(**) will have at most two solutions. Let J ntl denote the set of all such solutions for all
possible pairs (a 7 b 1), (az, bz). Obviously, J wtl is finite. I} suffices to choose 7 il
to be a positive integer notin J ] and different from all the r:j's, j=12,..,n

The last point to show is:

A =B =C =0 isimpossible.
For this purpose, suppose
A=B=C=0.
Under this assumption, and in view of the hypotheses concerning a; b‘., i=1,2, wenote
that:

) ﬁi>0,i=1,2.
@) If 0y = 0 then oy = 0 and conversely.

In this case, we have .

718 = 1P
since
B=0.

But T Re 0, since otherwise, a;=a, =@. Thus, T =% = 1 and hence
B] = BZ' But this will imply that b; =b, and a; = a,, contradicting the hypotheses.
Hence:

0<aisﬁz" i=1,2.
(iii) In fact, 0 < 0; < ﬁi, i =1, 2. But this is equivalent to
g<ai,o<bi,o’ i=12.

Now, C = 0 applied to this case implies

o,/B; = o/B,

which is equivalent to P (a; |b; )= P (a, |b, ). By the induction hypothesis, .’
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O<ap,=ay,<b;,=b,,,

that is

O<oy=0oy<f; =4
which implies, using B = 0,
a;=a, and b;=b,,

a contradiction again.
Thus, in summary, A = B = C = 0 cannot hold. o

Here is an alternate proof of Lewis' Triviality Result in the general case. For a
Boolean ring R a probability measure P on R, and a mapping f: R X R <+ R, define

.9’P= {Pb :Pb(-) = P(-|b), be R, P(b) > 0},
Up= {(@a,b):a,beR,PD) >0 Pa|b)=0 or 1},

gf,P ={(a,b):a,beR,PDb)>0, forall ce R such that

P(bc) > 0 and Pc[f(a, b)] = Pc(alb)] ,
and

Ip= {(a,b):a,be R, P(b)>0,(a,b)e %p, and 0 < P(ab) = P(@P®) < 1} .

Then
i?’f’P CIpy U

Indeed, let (4, b) € is’f,P\ %P. Then 0 < P(a|b) < 1. For c =1, P(bc) = P(b) > 0, and
we have

P[f(a, b)] = P(a|b).

Also,
PIfta, b)) = P (a|b) = 1,
and
Pa,{f(a, b)] = Pa,(alb) =0,
whence

P(a|b) = Plf(a, b)] = Plafla, b)] + Pla’-fa, b)] = P(a),

that is, P(ab) = P(a)P(b), which means that (g, b)e I
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As a consequence, if R is a Boolean ring having at least two elements a, b such d

that 0 <a<b<l, then there is no map f :R? -+ R compatible with conditional
probability. Indeed, if such a map f exists, then choose P to be a probability measure
on R such that 0 < P(a) < P(b) < 1. We have

(a, b)¢ %P, (a,b)e ‘Kf,},.
But
0 < P(a)P(b) < P(a)=P@ab) <1,

and (@, b)e T P a.comradiction. Thus no such map f exists, and Lewis' Triviality
Result follows. ]

We tun now to Copeland's work. He looked for a mathematical operator
representing the logical connective "if" in R, analogous to division. That is, he apparently
had in mind modeling (a|b) with the "fraction” a/b in R. With this he introduced the
following notion.

Definition. An implicative Boolean ring is a Boolean ring R together with an additional .)
binary operation X satisfying the following, for elements ¢, b, c in R.

() ax(bxc) = (axb)xc,

@) ax(b + ¢) = axb + axc,

(iii) ax(bc) = (axb)(axc),

(v) ifaxb=axcanda#0, thenb = c,
v) axl =a,and

(Vi) for every a and b with b # 0, there is an element ¢ such that ab = bxc.

Axioms (iv) and (vi) enable one to define an operator ¢ by ab = bx(b0a), for b # 0.
For b# 0, the mapping Rb-R :rb-bd(rb) is one-to-one and onto. Indeed,
bO(rb) = bO(sb) implies that

bx(b0(rb)) = bx(b0(sb)) = rbb = rb = sbb = sb,
so that the mapping is one-to-one. Since
x(xxy) = (ex1)(xxy) = xx(1-y) = xxy, xxy <x.

Thus bxr is an element of Rb and bxr = bO(bxr) = r since bxr = (bxr)b = bx(bO(bxr))
Thus the mapping is onto. This shows that every implicative Boolean ring # {0} is
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infinite, since R and Rb are in one-to-one comrespondence and Rb is smaller than R for
b # I and for R finite. The mapping above is actually an isomorphism, so R is isomorphic
to Rb for every b # 0. This severely limits the usefulness of implicative Boolean rings.
Also, there do not seem to be any appealing examples of them.

By a "probability”, Copeland meant any probability measure P on R such that

P(axb) = P(a)P(b). ’
This makes ¢ compatible with such probabilities, since
P(a|b) = P(ab)/P(b) = P(bx(PRa))/P(b) = P(b)P(b0a)/P(b) = P(bda).

If all probabilities on R satisfied this condition, then Lewis' Triviality Result would imply
that there were no implicative Boolean rings except 0. Thus given a non-trivial
implicative Boolean ring, only some probability measures on it are allowable, and
Copeland does not elaborate on that point.

Since the intention of Copeland was to stay in the ring R, the problem of
“conditional logic", that is, considering operations between conditional events, did not
arise. In any case, this approach through implicative Boolean rings seems futile. As
Pfanzagl (1971, Chapter 12) has pointed out, if (a]|b) e R, then c A(a|b) admits no
semantic interpretation.

1.2 Division of events

Although Copeland did mention that his operator "if" is somewhat analogous to
division, he did not elaborate further on this connection. It turns out that in Boole's basic
work (Boole, 1854), the problem of interpretation of division of propositions was
considered in some detail. However, since all elements except  in a Boolean ring are
zero divisors, there are bound to be some difficulties with this approach. We now outline
the idea of Boole and the follow-up work of Hailperin.

Boole's division interpretation

In his basic work (Boole, 1854) which laid down the foundation of symbolic logic,
Boole explained vaguely an interpretation for division in a Boolean ring. For elements a
and b of R, the element a/b is defined to be an element of R such that (a/b)b = a. Now
such an element exists only if a < b. This difficulty can be circumvented by requiring that
a/b = ab/b. But then, instead of trying to solve the equation (ab/E)b = ab for ab/b, which
has many solutions, indeed the whole coset a + Rb’, which of course is not an element of
R, Boole proceeded differently. Writing down the normal disjunctive form of a binary
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Boolean function as
fla,b) = [fi1,Dab} v [R0,1)a’bj v [f{0,0)a’b’] V [R1,0)ab’],
he took formally f(a,b) = a/b, leading to the expansion
alb = ab Vv (0/0)a’b’ = a v (0/0)b’,

since 1/1 = 1,0/1 = 0, and 1/0 is not defined so that ab' has to be 0, that,is a<b. It
remains to interp}et the indefinite "quantity” 0/0. Here is Boole's description of 0/0:
"The symbol 0/C indicates that a perfectly indefinite portion of the class, that is, "some",
"none", or "all of its members are to be taken" (Boole, page 92). Translating Boole, aVxd'
is a candidate for «/b, for a<b and forany x in R, and of course a V xb' is precisely
the coset a + Rb'. As in the case of Copeland, no attempt was made concerning logical
operations among these “algebraic fractions”.

Jevons (1879) objected to Boole's division on the grounds that it lacked clarity.
Peirce (1867) retained Boole's operation of division and embellished it. MacFarlane
(1879) produced a very readable and improved version of Boole's idea. Unfortunately,
this work did not enter the main body of logic. In effect, the vacuum created by the lack
of division in Boole-Schroeder logic was filled by the introduction of other operations
within logic, such as material implication.

Rigorization of Boole's technique

Hailperin (1976) analyzed thoroughly Boole's original work - especially his long
forgotten concepts of logical division and fractions of events. In fact, Hailperin came to
the conclusion that Boole's division is viable, provided sufficient rigor is used in
developing the idea. This was accomplished by forming a Chevalley-Uzkov "ring of
quotients” corresponding to "divide" by an event b (Uzkov, 1949). Indeed, since all the
elements of a Boolean ring R are zero divisors (except /), the standard approach to rings
of quotients is not applicable. A way around this situation were given by Uzkov (1949)
for commutative rings with unity. If R is such a ring, then the construction of a ring of
quodents for R is as follows. Let S be a multiplicatively closed subset of R not
containing 0. Thatis, SCR and xye S whenever x,ye S. An equivalence relation is
definedon R xS by

(r,s)=(,u)

if and only if there is an element x€ § with
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x(st-ru) =0.

The set Rg of equivalence classes r/s of = is a commutative ring with identity under
the operations given by

ris + tlu = (ru + st)lsu

and
(r/s)(t/u) = ntisu.

When R is Boolean, then any element be R with b#0 is a candidate for S
above. Thus the ring R (b} can be formed, and it is easy to see that

R{b} +Rb:alb-ab
is an isomorphism, and of course
Rb-R|Rb" :ab-a+ Rb’

is an isomorphism as well. Thus Hailperin is led to the association of a conditional event
(a]|b) with the coset a + Rb’. Hailperin actually took § to be R V b, the principal filter
associated with b, but this leads to the same ring of quotient, and hence both to R|Rb’.
Calabrese (1987), without having in mind conditional events as "quotients” in a Boolean
ring, proposed an equivalent definition, and hence one equivalent to the coset form. In
any event, for Hailperin, "fractional events" became cosets of principal ideals. In any
case, it allowed Hailperin to justify Boole's notion of fractional events. He went on to
consider these "fractional events” or "conditional events", as the set of all cosets of
principal ideals. In ring theory, it is not customary to define operations among cosets of
different quotient rings. Because of this fact, Hailperin (p. 112-113) refers simply to the
collection of all conditional events as a partial algebra, that is, the operations + and -
can be only defined on each quotient ring, but not between two cosets from two different
quotient rings. This is somehow surprising since it is precisely this point which is
important for a logic of conditional propositions. It is here that a good motivation for a
new problem in ring theory arises. The problem is this: What are the operations of
interest on the union of all quotient rings of R extending those on each fixed one? This
question is the topic of Chapter 3. Another point is that in his discussion concerning truth
tables, Hailperin (p. 127) did realize that conditional events have three possible truth
values. This fact was realized much earlier by DeFinetd (1964) and Schay (1968) who
defined conditional events precisely this way, that is from a semantic viewpoint (or
equivalently, by extending the concept of ordinary indicator functions of events or sets).
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Not only is this approach to conditional events through a three-valued logic equivalent to
the coset form of conditional events (see Chapter 2), but it sheds light on how to define
logical operations among conditional events, addressing the problem in ring theory
mentioned above. fndeed, it is well-known in classical two-valued logic that if

f0, )"0, 1),
then there is a unique logical operation
(pf: R*4R
such that

t[‘P QA1 oees an)] =ﬂt(al): ) t(an)))

where ag;eR, i=1,2,..,n and ¢ stands for "truth value of." (See, for example,
Hamilton, 1978). It tumns out that this result remains valid in a three-valued logic, as we
show in Chapter 3. Thus, not only will each system of operations on conditionals have a
logical interpretation, but more importantly, the above extension problem in Boolean ring
theory is solvable in view of existing systems of three-valued logics, for example those of
Lukasiewicz, Sobocinski, Kleene, and Bochvar (see Rescher, 1969, and our Chapter 3).

To complete a survey of Hailperin's work, it should be also mentioned that in
making "Boole's probabitity sigorous,” Hailperin (footnote on . 191) took the probability
of a conditional event, that is, of a coset, to be a conditional probability. This is indeed
well-defined, and is precisely a "compatibility condition" with probability leading to an
axiomatic theory of conditional events (see Chapter 2). In the same vein, Hailperin
(p. 195-197) proceeded to consider the concept of a "conditional events probability realm."
This is somehow si.ailar to Renyi's (1970) approach to conditional probability spaces, but
in which there is a home for (a|b) in P(a|b). See also our Chapter 5. However, since
the space of conditional events was not investigated far enough to reach a reasonable
algebraic structure (mainly due to the lack of operations amongst conditional events), no
new concepts were introduced beyond that. In Chapter 4, we will show that the space of
conditional events is a Stone algebra, generalizing Boolean algebras. In other words, the
"partial algebra” of Hailperin is in fact an algebra with Lukasiewicz's three-valued logic
interpretation.

In light of the attempt to use the theory of "rings of quotients”, the following is
pertinent, and should lay these attempts to rest. The only quotients that make sense in a
Boolean ring are those a/b where a < b. By a/b, we mean an element in R for which
(a/b)b = a. Indeed, if (a/b)b = a, then multiplying through by b gives ab = a, whence
a<bh. If a<b, then taking a/b = a gives an element whose product with b is a.
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Further, the ring R cannot be enlarged to another ring so that a/b is defined for a not < b.
Indeed, b’(a/b)l} = b’a = 0, and this is not the case unless @ < b. So trying to enlarge R
so that division of events is possible in that enlargement is futile. Any divisions by
clements of R that can be carried out in a larger ring can already be carried out in R.
More general statements are true. A "ring of quotients” of a ring R is a ring S and a
homomorphism f: R =+ § satisfying certain properties. If R is Boolean, then so is the
subring fiR) of S. Suppose one wanted to make an element b in R into a unit in S, that is,
wanted S to be such that fb) could be divided into everything in S (or even in {R)). Then
in AR), [RDIRB)IAB) = K1), whence, multiplying through by f{b) as above, we get fI) =
fb). Butf{I) = Iin S, f being a homomorphism, so fib) = 1. So the only way to make an
element of R into a unit is to make it into the identity element. If a/b is to make sense for
every element a (or even just for @ = I), that is, if b is to be a unit, then the setting must
be such that b = 1. What Hailperin did, in effect, was to go to the ring R/Rb', or
equivalently, Rb where indeed b is the identity; b + R/Rb' = 1 + R/RP', and b certainly is
the identity of Rb.

Hailperin used a special Chevalley-Uzkov ring of quotients. There are many "rings
of quotients” in ring theory, two others being Johnson-Utumi ring of quotients and the
"classical ring of fractions." (See for example, Lambek, 1966, for background). This can
be seen as follows. We describe these two briefly for commutative rings.

Let R be a commutative ring with unity I. Anideal I of R is said to be dense
if, forall re R, rI =0 implies r=0. A fraction is a (module) homomorphism h :I-+R

with domain I being a dense ideal. That s, if x, y € I, then

h(x + y) = h(x) + h(y),
and if xe I, re R, then
h(rx) = rh(x).

Let Hom(I, R) be the class of fractons with domain I, and let F(R) be the union of
then Hom(l, R) over all dense ideals I. For fe Hom(I,R) and g€ Hom(J,R),let f=g
if f=g on InJ. Then = is an equivalence relation on F(R). It is obviously reflexive
and symmetric. Transitivity is less obvious. For that, first note that the intersection of
dense ideals is dense. Indeed, for I and J dense, {(/nJ) =0 imples that 7IJ = 0, so
rl = 0, whence r=0. Now let fe Hom(l,R), g € Hom(J,R) and he Hom(K,R) with
f=g and g=h. Let xeInK. For yeInJnK,

F)y = foy) = g(xy) = h(xy) = h(x)y,
SO
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(fx) - h(x)y = 0,
and so

Rx) = h(z).

Thus = is also transitive.

With appropriate operations (see for example, Lambek, 1966), the set Q(R) of
equivalence classes of a ring, called the Johnson-Utumi complete ring of fractions of R.
Since Hom(R, R) -+ R : f-+f1) is a ring isomorphism, Q(R) contains a copy of R. Fora
non-zero divisor r€ R, Rr is dense, and the Hom(Rr,R) for such r give rise to a
subring CL(R) of Q(R) called the classical ring of quotient of R. An element
fe Hom(Rr, R) is identified with the "fraction” x/r, where fr) = x.

When R is a Boolean ring, the only non-zero divisor is I, thus the only dense
principal ideal is R itself, and CL(R) = Hom(R, R) is just R itself. This is the case if
R is finite, for example.

If R is the ring of all subsets of a set €2, then an ideal 7 is dense if and only if
x= Vi= 1, since otherwise x’#0 and x'I=0. In this case, Q(R) is also just R
itsellf?ITo see this, for / dense, fe Hom(I,R) and je I,

fD =f)-1=,5) VD= VSfii=j(V),
I iel

ie el

so f is just multiplication by V fi) =x. This f is equivalent to ke Hom(R, R) given
iel
by h(r) = rx, and Hom(R,R) is isomorphic to R as indicated above. More generally,
viewing R as a subalgebra of 2Q for some set 2, call R complete if R is closed
under arbitrary unions. Then, as above, / is dense if and only if v =1, and QR)=R.
el

ie
It turns out that Q(R) =R if and only if R is complete (Lambek, 1966). There exist
non-complete Boolean rings, so in general Q(R) properly contains R.

1.3 Three-valued logic

Independently of each other, Reichenbach (1948, 1949), Schay (1968), DeFinett
(1972, 1974, Volumes 1 and 2), and Dubois and Prade (1987, 1990) considered the
modeling of conditional events from a logical viewpoint. They all viewed a conditional
event as an object with three possible "truth” values.

First, Reichenbach considered probability as being determined completely through
all standard logical operations over Boolean algebras of propositions and quantified
expressions, as well as through the adjunction of a distinct “probability impiication”
operator P corresponding to P(- | -). He also developed a calculus of probabilities (1949,
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Chapter 3), and a related probability logic (1949, Chapter 10). Probabilistic conditioning
and logical implication were compared in two places: (i) in the discussions of basic
axioms for probability (1949, pages 54-57), in which probabilistic conditioning is argued
to be a natural, but because of the zero-probability antecedent case, tacitly modified
extension of logical implication, and (ii) in the use of P as a "quasi-implication” (1948,
table 4b, page 151; table 5, page 168; and pages 166-168). Reichenbach proposed that, in
place of classical logical implication, quasi-implication relative to three-valued logic
(0 = false, I = true, and I = indeterminate) was a more suitable operation. Informally, for
ain {0,1,1},
08« and J E o

are defined semantically as P(cx|0) = I and P(¢t|I) = o, respectively. Reichenbach also
briefly considered an equivalent form of the concept of measure-free conditionals through
his "indeterminate” probability implication operator b -+ a via symbolic logic as
@P)(b -+ a). (See Reichenbach, 1948, pages, 51, 52, 71, 72).

Schay (1968) asked "could (a|b) be defined in a manner consistent with general
usage in probability theory, that is, so that P(ab)/P(b) may be interpreted as the
probability of (a|b)?" Schay proposed to define (a|b) as a generalized indicator function
on Q (here R is a Boolean ring of subsets of £2) where

1 if we ab
(@|bw)= {0 if we a’b
u (undefined) if we b’.

Note that such functions are clearly in one-to-one correspondence with elemz:nts of Rb, or
with elements of the quotient ring R/Rb' since such functions specify the subsets b and ab,
and conversely.

In discussing conditional probabilities, DeFinetti made a remark about P(a|b),
saying that one can even talk about the probability of the "cc.nditdonal event" (a|b)
(DeFinett, 1974, page 134). He specifies this mathematical objzct on page 139 of that
reference, as a "tri-event”, cormresponding precisely to Schay's notion. DeFinetti also
considered interpreting conditional events through a coset representation (1974, Vol. 1,
pages 267-269), but apparently did not connect this with Mazurkiewicz (1956) and others'
ideas on the same subject. (See Section 1.4 below.) Furthermore, DeFinetti even
considered briefly how one could obtain a "logical sum” of such conditional events (1974,
Vol 2, page 310) as sell as how double conditional events could be interpreted (1974, Vol
2, pages 327-328). In arelated vein, DeFinetti broached the issue of “counterfactuals” and
verifications relative to conditional events, and concluded that compatibility constraints
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were key to any further analysis of operations on such entities. But, other than brief
comments on the potentiality of how a calculus of operations among conditional events
could be developed -and was needed - no actual work in this direction was executed.

Bruno and Gilio (1985), inspired by DeFinetti's much earlier work, proposed an
abbreviated algebra of measure-free conditional events to produce "conditional
hyper-probabilities”, which, in turn, were used to obtain some néw factorization results for
Scozzafava's pseudodensities (1984). However, they did not attach any  direct
interpretation to conditional events such as being cosets of principal ideals, as presented
in our work here. It turns out that their operations are identical to certain of those
proposed by Schay (1968) and Calabrese (1987). (See also Secton 1.5.) Based on
DeFinetti's work, but independent of Bruno and Gilio, Zarigelli and Scozzafz. . (1984)
mentioned the lack of apparent attention paid to the domain of conditional probability
operators, that is , to conditional events. Their thesis was that careful consideration of
such could lead to improved interpretations of frequency data and the elimination of
certain confounding problems.

In discussing reasoning with uncertain information, Dubois and Prade (1987, fisst
edition 1985), were led to consider a2 symbol like (-|-) for a “non-traditional” logical
connective. (It should not be confused with Sheffer’s "binary rejection” (a|b), which is
defined as a’bh’). A truth value table for (a|b) is established by observing that the truth
values #(a|b) of (a|b) are solutions of the equation Kab) = Min{1(a|b), 1(b)} and so are
given by 1(a]b) = 1,0 , or {0,1} according as #{ab) = I or #(a’b) = I, or #(b) = 0. Here,
{0,1} is referred to as an "indeterminate™. See also Dubois and Prade (1989, 1990).

Some additional efforts related to conditdonal events are these: Cox (1961)
established an algebra of conditioning for a fixed common antecedent by formally
omitting the probability operator everywhere it appears in a conditional or unconditional
form. It appears that Cox implicitly recognized the need to establish measure-free
conditional events, but did not continue the development. The closest he came to the
point of introducing conditional events is in Chapter 1.3, corresponding to the measure-free
chaining forms. (See Chapter 3 in this book.)

Popper (1961, Appendices IV* and V*) developed a postulate system for probability
which included conditional probability perceived as a numerical operator on ordered pairs
of primidves subject to certain algebraic relations within the probability arguments.
Furthermore,, he defined unconditional eventc within the probabilides through
probabilistic equivalence, but unfortunately did not attempt to camy out a similar
procedure for the ordered pairs within the probability operator, comesponding to
conditional events.

It should be mentioned also the very general work of Foulis and Rendalt (1971,
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1974) conceming the development of measure-free conditioning maps. Future efforts may
uncover useful connections between that work and ours.

1.4 Coset form of conditional events

In the attempt to define rigorously the concept of conditional events, compatible
with probability theory, except for Copeland, all previous researchers came across, in one
form or another, cosets of principal ideals in a Boolean ring. This section is devoted to a
survey of more z{pparent work reiated to the coset form of conditional events. In historic
order, we survey the work of Koopman (1940), Mazurkiewicz (1956), Domotor (1969),
Pfanzagl (1971), Hailperin (1986), and Calabrese (1987). Again, it should be noted that
all these efforts were carried out independently.

Koopman's program was an investigation into "the axioms and algebra of intuitive
probability”. The algebra part, that is, the definitions of logical operations among
conditional events, was not addressed! The idea of intuitive or qualitative probability is
well-known: the primal intuition probability expresses itself in a partial order relation
among events. Qualitative (or comparative) probability is motivated by the desire to make
numerical probability measures compatible with non-numerical probability comparisons.
See, for example, Fine (1973), Fishbum (1983), Villegas (1967), Domotor (1969), and
Suppes (1973). Since information is basically conditional, "conditional events" should be
the basic building blocks rather than unconditional ones. While Rényi (1970) took this
viewpoint, from a numerical approach, extending Kolmogorov's model (see Chapter 5),
Koopman first proceeded from 2 measure-free attack. For a and b in R, an expression
denoted by (a|b) is called an "eventuality”. In a footnote (1940b, page 270), Koopman
mentioned that the notation (a|b) is used in a manner "close" to that of coset a + Rb',
without further elaboration. In fact, (a|b) is used as an "alternative notation" for a + Rb'.
From a qualitative viewpoint, the basic problem is that of comparison in probability of
eventualities. That is to say, a system of axioms for a partial order relation among
conditionals should first be given. He focuses attention on the set R|R = U RIRD of all
cosets of all principal ideals, and postulates the existence of "n-scales”. From this, upper
and lower numerical probabilities of conditional events were shown to exist. There is
some aralogy here in the work of Dempster (1967) and of Shafer (1976). Conditional
probabilities themselves were next defined as common values of upper and lower
probabilities (when they happen to be the same). On conditional events with the same
antecedent, this conditional probability reduces to an ordinary probability measure. It
seems at this point that Koopman wanted simply to show that the numerical probability
that he introduced generalized the Kolmogorov model. He made no attempt to introduce
operations between conditional events with different antecedents and to consider the
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behavior of his new probability with respect to such operations. Instead, he gave a system
of axioms for orderings among "eventualities,” that is conditionals with different
antecedents. See Section 3.5 for more discussion on Koopman's system of axioms for
intuitive probability.

The major contribution of Mazurkiewicz (1956, Chapter III) were to identify
conditional events as cosets of principal ideals and to note the consistency of the
assignment of probabilities to these cosets. That is, the assignment P(a + rb”") = P(a|b)
is well defined, ‘being P(ab)/P(b), so that the assignment P(a + Rb) = P(a|b) gives a
probability measure on the quotient ring R/Rb” of cosets of the principal ideal Rb’.

Domotor (1669) also identified conditionals with cosets of principal ideals, but did
not introduce a partial order on it. He embedded R/R into a larger algebraic structure
equipped with a vector space structure, identifying R/R with DeFinetti's generalized
indicator functions. On this vector space, probability measures are viewed as linear
functionals. However, except for vector space operations, no attempt was made to
consider extensions of ordinary boolean operators.

In his book on the theory of measurement, Pfanzagl (1971) presented an approach to
the simultaneous measurement of utility and subjective probability generalizing
Morgenstern-Von Neumann's approach (Von Neumann and Morgenstern, 1947). The
syntactic concept of conditional events is essential in his work. Even Pfanzagl was aware
of Copeland's implicative algebra (1941), (but not of Koopman's work (1940) in which the
coset form was proposed for conditionals!); he did not adopt Copeland's concept of
(measure-free) conditional events. Instead, he proposed the coset a+Rb” for (a|b).
But he stayed in a fixed (Boolean) quotient ring R/Rb’ (that is, for a fixed b e R), so
that conditjonal events with different antecedents were not investigated. He considered
conditioning in R/Rb’, that is, iterated conditional events of the form ((a|b)|(c|b)), for
b fixed, and this was defined simply as a coset of the Boolean ring R/Rb’, that is,

((a|b)|(c|b)) = (a]|b) + (RIRb")(c|b)’,

where
(c|b)’ = (c"|b),

the "negation” of (c|b) in R/Rb’. (All operations involved are coset operations on
R/Rb’.) With the mathematical concept of (measure-free) conditional events, the notion
of "compound wagers" (conditional bets) can be formulated. For each fixed be R, the
Boolean quotient ring R/Rb’ 1is the collection of all conditional events (or conditionals)
with the same antecedent b. The conditional (a|b)e R/Rb’ can be used in the
representation of "compound wagers” (conditional bets) (Pfanzagl, 1971, p. 205-207) as
follows.
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Following Pfanzagl, a "wager" is a situation with a finite number of possible
"ouicomes,” exactly one of which is to occur. Let A={a,,.., an} be the set of
outcomes for a wager W. Which one of the a‘.'s occurs depends on some uncertain
event aeR. A "simple wager” W, is defined to be a wager with only two possible
outcomes, say @, f. Specifically, w, = e if 4 occursand B if 4’ occurs. In a logical
framework, w can be viewed as a function on the set of maximal filters Q of R that
is, models of R. (Sec Chapter 6): For all @e Q,

aifae o

wa(a))={l3 if 3’ € .

A compound wager is defined to be a wager with

A = {alr az: a3) a4}1
depending upon (a|b), i.e.
o if abe @
o, if a'be o
oy if ab’ € @
oy if a'b’ € o.

W(alb)(a)) =

For more detal, see Pfanzagl (1971, Chapter 12). See also Neapolitan (1990, p. 57) for
conditional bets.

Independently of previous work on the subject, Calabrese (1987) investigated a
conditioning operator in logic from an empirical viewpoint. His approach is algebraic,
and is based on a relation between logical deducts (or consequences) and filters in a
Boolean ring. (See Tarski, 1956.) For each b in R, the set of deducts of b is the filter
RVvb={rvb:reR}. Thisis precisely the coset b + Rb'. Noting

Ryvb={xeR:x2b}={xeR:xb=1-b}
and replacing I by any a in R leads to the class of a-relative deducts
R Vb)a= {x €R :xb = ab}.

It is easy to verify that (R V b) a is the coset a + Rb’. A fusther critic of Calabrese's work
will be found at the end of Section 1.5 below.

1.5 Logical operations among conditional events
Schay (1968), Bruno and Gilio (1985) and Calabrese (1987) contain developments
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of logical operations among conditional events. (Although Adams (1975) did not define
conditional events mathematically, he did propose similar logical operations among them.
See Chapter 0.) A comparison with our operations will be given in Chapter 3.

Schay became apparently the first 1o attempt a full calculus of operations among
conditionals, especially among those with different anteceadents. Specifically, Schay
(1968, page 335) defined five operations as follows: For him the Boolean ring R is
explicitly a ring of subsets of some set £, and for @, b € R, (a|b) is a generalized indicator
function, as defined in Section 1.3, that is (a|) : Q » {0,u,]} with (a|b) =0 on a’b, u on
b’ and I on ab. Although not referring explicitly to DeFinetti's idea of conditional event
indicator functions, Schay did actually use this idea to help introduce his definitions for
logical operations.

Definition (Schay). Fora, b,c,anddinR
@a|b)’ = (a’|b;
(alb) n (c|d) = (ac|bd);
@lb)v(c|d)=(abVcd|bV d);
@|b) A(cld)=((b" va)d' vo)|bVa)
(a|lb) V (c|d) =(a V c|bd),

The operations (', n, V), as well as (’, A, U) satisfy DeMorgan's Laws, as is easily
verified. Further, when d=b,u=V and n = A, and the operations reduce to the usual
set operations on the first component of (a|b), leaving the antecedent fixed. Since
(a|b) = (ab|b), one can restrict a<b, with no loss of generality. Then ’ becomes
(a]b)’ = (a’b|b).

Schay did investigate the algebraic structure of the space of conditionals which turns
out to be equivalent to the set R|R of all cosets of all principal ideals (see Section 2.3).
He noted that it is a lattice with respect to ( < ,un) and with respect to (<,V,A). He also
provided an axiomatic description of his structure, analogous *o Stone's Representation
Theorem for Boolean algebras. (See especially his Theorem 5.)

Bruno and Gilio (1985), inspired by DeFinetti's work (but independent of Schay)
and motivated by some problems in statistics, also developed a calculus of conditional
events. Here, as with Schay, (a|b) is identified as a generalized indicator function on Q.
The disjunction and conjunction operations of Bruno and Gilio are identical to Schay's v
and n, respectively, and their negation is the same as Schay's. They define an order
relation among conditionals by (a|b) < (c|d)ifa<candb<d.

Independently of Schay, Adams and Bruno and Gilio, Calabrese used empirical
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guidelines to propose an algebra for these objects. Fis operations (|)’, V, and A turn out
to be identical to Schay's ’, U, and A respectively. Calabrese also investigated an
extension of Stone's Representation Theorem, and considered briefly higher order
conditioning. (As stated carlier unaware of Lewis’ Triviality Result, Calabrese proved that
no mathematical form for conditional events which is compatible with probability, can be
given in terms of a Boolean function into R.) A recent discussion of Schay's, Calabrese's,
and our work is in Dubois and Prade (1989, 1990). A more systematic comparison is
given in Section 3.5.

For ease of reference, we describe below the essentials of Calabrese's work
(Calabrese, 1987). 3

Starting from the viewpoint of a unified algebraic theory of logic and probability,
Calabrese argued for an additional operation (-|-) on a set of propositions represented
by a Boolean algebra R. This same argument has been advocated much earlier by
Copeland (Copeland, 1941), see Section 1.1. However, unlike Copeland, Calabrese came
to realize that a home for conditionals should be outside of R. Although works such as
Adams (1975), Hailperin (1976) were cited in the references of his paper, apparently
Calabrese did not notice a certain number of basic facts, namely Lewis' Triviality Result
(discussed in Section 1.8 of Adams' book), Adams' proposed logical operations for
conditional events (called conditional formulas) (Adams, p. 46-47), and the (equivalent)
coset form for conditional events in Hailperin's book. As such, he first reproved a special
case of Lewis' Triviality Result, namely that conditional events cannot be represented by
binary Boolean operations on R (Calabrese, 1987, Theorem 2.2.1). Calabrese's approach
to defining conditional events was based upon the concept of filters in R. Specifically,
for a, b € R, the conditional event (a|b) is taken to be the equivalence class of elements
of R with respect to the filter R V b, where by definiion a=c (under I=RVb) if
and only if ai = ci for some ie . Butitis easy to see that the equivalence class of a
under I is precisely the coset a/I’ where I’ is the ideal defined by I’ = (i’ : i€ I}.
Indeed, let a[l] denote {x:xe€ R,x=a under I}. Observe that x € g[l] if and only if
x=ri’"Vai forsome re R and iel But

x=riVai=ri"+ai=n"+a(l +i)=(+r)i’ +aq,

sothat aff} = a/l’, where I’ is an ideal. In particular, for I=RVb (the filter
generated by b), we have I” = Rb’, and hence (a|b) =a[RVb] =a + Rb’ = a/Rb’, a
principal coset.

Calabrese went on to consider logical operations among conditional events by
logical considerations. First, arguing that the statement "if p then (if ¢ then )" is the
same as "if (p and ¢) then r," he identified ((r|q)|p) with (r|p Ag). See also
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Section 8.1. From that, as an axiom, he defined

(ClD@]s)
to be
rlg A @]s).

Also, as an axiom, the disjunction V is defined by

eloVGEIN=(@A)V(EAD|pYD

which is precisely Adams' "quasi-disjunction” of conditional formulas (Adams, 1975, p.
47).

Of course, since R|Rb’ is a Boolean ring, for each fixed b, the negation for (a|b)
should be negation in this Boolean ring, that is to say (a|b) = (a”|b). The conjunction A
is derived from vV via DeMorgan: '

@|p) A Gs|n) = (@]p)’ V(s|D7Y
=@’ VE N =@ ADVE AD|pV
=@ VYAC' VspVD
=(@39AC3s|pVD),

where 3 denotes material implication. Again, this is Adams' "quasi-conjunction”
operation (Adams, 1975, p. 46).

1.6 Notes

Below we include several intuitive or naive approaches to the problem of combining
conditional events, and of assigning probabilities to them. Although, they turn out not to
be satisfactory, either theoretically or practically, they are presented here for purpose of
completeness because of their apparent wide-spread use.

Product space approach.

First consider the case of equal antecedents, and consider (a|b) as primitives in our
natural language, as in Adams (1975). If *: R 4 R is a Boolean function, then for a
probability measure P on R, assign l’;((alb)*(c|b)) = P(a*c|b). (There is a problem

already with f’ being not necessarily well defined.) Now for (ailbi) where the bi are
not necessarily the same, one can try to reduce to the equal antecedent case, by getting a

“common denominator”. One possibility for a common denominator is 3 = (b i b2) in
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R, Wentify a, with a; = (@, I), a, with g, = (I, a,), and (a6) with (3;|b).
Then we are back in the equal antecedent case, but operating in the product space R

Now for a probability measure P on R, one needs a probability measure P on R® such
that

AN A
P(a;|b) = P(a;|b), i=1,2.

But this requires for example,
A A A
P((al’l)l(bl’bz» = P(albl’bZ)IP(bI'bZ) = P(albI)IP(bI).

Taking P to be the product measure meets this requirement, but the product measure is
unsatisfactory because it implies the independence of the events (a D) and 04 ,az) in

R2 . Another possibility is to require that ?’(3) = I, and find such ?’ with ?’(a,]) =

P(a|b 1) and 1’5(1 a) = P(a[bz). Finding such ?’s with given marginals is an extremely
difficulty task, but has been solved in the case =R, the field of real numbers. (Sklar,
1959, 1973). Sklar's Theorem says that if H is an n-dimensional cumulative distribution
function with one-dimensional marginal distributions F I F2, , F " then there exists an
n-dimensional copula C such that for all n-tuples (x 12 Xgs e e xn),

Hxp Xy, 000, xn) = C(Fl(x]), FoXodievvs Fn(xn)).

Conversely, if F I Fz, cees Fn are one-dimensional CDF's and C is an n-dimensional
copula, then H defined above is an n-dimensional CDF with marginals F i

Roughly speaking, for n = 2, a copula is a joint distribution for a pair of random
variables, each of which is uniformly distributed on [0, I]. More formally, a two °
dimensional copula is a mapping

C:[01]»[01}-10,1]

such that
(1) forallx gf0,1], C(x,0) = C(0x) =0, C(x,]) = C(Ix) = x, and
(1) for X; and y; € [0,1] with X; < X, and ¥; < ¥,» one has

Clxpyp) - Coepy,) - Cxpyp) + Clxpyy) 2 0.

Note that C is continuous and non-decreasing in each argument, and that
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Max{x +y- 1,0} < C(xy) SMin{xy} forx,ye [0,1]}.

The above bounds are also copulas, termed minimal and maximal . copulas,
respectively. For the use of copulas in statistics, see Whitt (1976), Genest and MacKay
(1986a, 1986b), and Marshall und Olkin (1988). For the problem of determining joint
densities from given conditional densities, see Amold and Press (1989).

Returning to the problem at hand, it turns out that the above intuitive approach in

the case of equal antecedents leads to a very restrictive form of ?’ Indeed, consider the

case (Q,R) =@, B, where 2 is the Borel o-field of the reals R. Consider (ailb),

i=12,..,n where a; = (-0, Si]’ and denote by F, and F P the CDF's associated with
P

P and P, respectively. Then for @ =bxbx..xb,

i=

AN
F?)(SJ, Sz, >eey Sn) =P(X. Iai)

A A A A A
= P[nii 8= P[ni: eap
A
= P[nig 1B = P[n.ilailb]

= Min

1<i<n P((-e, Si] |b) = Minl

<ign Fp(s;1 ),
where each marginal CDF of F, is Fp(: | D).
P

Now, when combining n conditionals as above, by Sklar’s theorem, one chooses an
n-dimensional copula C, independently of the forms of the conditionals. The joint CDF

of P is then obtained once P and the bl.'s are specified. The above form of a maximal
copula in the case of equal antecedents contradicts the independent choice of C.

Combination of antecedents approach
One way to combine conditional esents (a|b) and (c|d) is via ordinary Boolean
operations on both components, for example,
@) vicld=(@vc|bva,

and

(@alp)n(cld) =(@nclbnd).

The problem in doing this is that the first is not well defined (for example when
(a]b) = a + Rb’), and besides violates
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je Pl(a|b) ¥ (c|d} 2 P(a|b),
while the second violates
P[(a|b) n (c|d)] S P(a|b).
i In fact, in the latter case, for 0 < @ = ¢ = bd with P(bd) < P(b) and P(d), one has
§ P((alb) n (c|d) = P((a|b) n (a]d))
- = P((ab|bd) n (ad|bd)) = P((bd|bd) n (bd|bd))
- = P(bd|bd) = 1,
1 and yet
H
0 <P(alb)=Pd|b)<a
? and
0<P(cld)=P®|d) < 1
i
i. Thus probabilities do not behave as one would like for either of these operations on

conditional events. However, it will be shown later that there is a way to combine
conditional events that extends the Boolean operations on ordinary events and so that
probzbilities do behave properly with respect to that combinaton. In effect, this
approach is a non-cartesian product common denominator one.

. e

o~ Ponr oy
. .

l Material implication approach
We end this section with some additional remarks about material implication and its
relation to conditional events. Material implication is the function f:R xR < R defined

by fla,b) = b’ V a, also written b - a. Now material implication satisfies many desirable
l ' properties, including the following, which are trivial to verify.

cowe

-
.

(1) flab) = flab,b) (consequent-antecedent invariance);

. (2) (ab)=1 ifand only if b<a (tautology);

! (3) flab)b = ab (modus ponens);

' @) flach) = fla,b)f(c.b), fla V ¢,b) = fia,b) V Ac,b) (homomorphisms);
. (5) fabc)(c,b) = flac,b) (chaining);

©) flal)=a;

(7) ffab), c) = fla,bc) (iteration);
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B (8) ARb’,a’) =fab) (modus tollens); .)
©) fahficd) = fiac, a’bV cd ¥ bd;
(10) Rab) V fic,d) = fa V c,bd);

(11) fab) + fe.d) = f(@ + c)bd),abV cdvbd Vb’'d’).

j Also note that b - a is the maximum solution to the equation xb = ab. The
function f is not one-to-one. For example, for any s<b’ Va, fis;s Va’b) = fab). The

-

§ basic difficulty of material implication is that it is not compatible with probability, that is,
P(a|b) # P(b + a) forall P for which P(b) # 0. We have seen this before, and of

] course follows from Lewis' Triviality Result. In fact, as shown in Section 1.1,

x P(b -+ a) 2 P(a|b).

Again, see the discussion in Sections 0.1 and 1.1.
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CHAPTER 2
DERIVATION OF CONDITIONAL EVENTS

This chapter is devoted to an axiomatic approach to deriving the mathematical
concept of conditional events. From intuitive properties capturing the basic aspects of
conditioning and the requirement that conditioning be compatible with probability, we
proceed to derive conditioning operators in logic, the values of which are conditional
events. A canonical form for conditional events, namely cosets of principal ideals, is
obtained. The space of all conditional events so obtained forms the basis of our extension
of logic to the conditional case.

2.1 Generalities

In view of Stone's Representation Theorem (see, for example, Halmos, 1963) and in
the spirit of symbolic (and algebraic) logic, the basic objects of our analysis are the
elements of a Boolean ring (R, +, -). A Boolean ring is a ring with identity such that
every element is idempotent, that is, for every element q,

a=ag-a=a.
it follows from
(a+b2=a+b+ab+ba

=a+b

that ab = -ba. Taking a = b gets a = -a so that @ + a = 0, that is, the ring has
characteristic 2, and is also commutative. The identity (or uniz, or unity) of R is denoted
1, as usual. Two additional "logical operations” are defined on Boolean rings, V (called
or, or union, or conjunction) and * (called not, or negation, or complement), by

avVb=a+ b+ ab,
and
a’ =1+aq,

respectively. Disjunction, or intersection, or and, sometimes denoted by A, is taken to be
the multiplication on R. A partial order < is defined by a<b if ab = a. The generic
example of a Boolean ring is the set of all subsets of a set Q, with + and - given by
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44 Derivation of conditional events

symmetric difference (the "exclusive or") and intersection, that is, by

a+b=ab’va’d
and
a-b=anp,

where  is complementation, and v and N are ordinary union and intersection of sets.
The identity 1 is the set  and the zero is the empty set ¢. The partial order then is
just ordinary containment of sets. This ring is called the ring of all subsets of , and is
particularly pertinent when £ is a finite set. More generally, a set of subsets R of an
arbitrary set 2 which is a ring under the operations given by

a+b=ab’va'b
and
ab=aAb

is a Boolean ring, and Stone's Representation Theorem says that every Boolean ring is
isomorphic to such a ring of subsets of some set.

An important concept is that of an ideal of a Boolean ring R. More generally, an
ideal of an arbitrary commutative ring R 1is a nonempty subset I of R suchthat a-b
isin I forall @ and b in I,and a-b isin I forall a in R and b in I. If R is
Boolean, then b = -b, and the condition that a- b isin I becomes simply that a + b
isin I. So an ideal in a Boolean ring R is simply a nonempty subset of R closed under
addidon and closed under multiplication by elements of R. An ideal is a principal ideal
if it is of the form

Ra={ra:reR).

Such ideals will be of particular importance for us.
For an ideal I of R, there is associated a ring R/I, called a quotient ring, whose
elements are cosets, that is subsets of R of the form

a+I={a+i:iel),
and addition and multiplication are given by

(a+D+G+DN=@+b)+1
and
@+nD-b+D=ab+1,

respectively. It is an easy exercise to show that this makes R// into a ring, using the
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properties of an ideal J. Further, R/I is Boolean when R is Boolean. Here, as is the
custom, we are using + and - for addition and multiplication in both the rings R and
R/I, but the context will make it clear where we are doing our adding and multiplying.

A mapping f fromaring R toaring S is a homomorphism if for @ and b in
R,

Ra + b) =Ra) + fib)
and

fla-b) = fla)-fb).

For an ideal I of aring R, fla) = a + I is a homomorphism from the ring R onto
the ring R/, call the narural homomorphism of R onto R/I. Tworings R and S are
isomorphic if there is a homomorphism from R to S that is one-to-one and onto. If f
is a homomorphism from R to S, then

Ker(f) = {a:fla) = 0}
is called the kernel of f, and is an ideal of R. if f isfrom R onto S, then

F(a + Ker(f)) = fla)

is an isomorphism from R/Ker(f) to S. This is the first isomorphism theorem for rings.
That F is one-to-one from R/Ker(f) onto ARR) 1is a special case of this. For any
mapping f defined on a set X, x ~y given by f(x) = fy) is an equivalence relation.
Let F(x) denote the equivalence class to which x belongs, and let the set of equivalence
classes be denoted by X/[f]. This set of equivalence classes is a partition of X, the map
F:X-XI[f] is the natural map from X onto X/[f], and 7 :X/[f] 2 fX) given by
7N(F(x)) = fx) is one-to-one and onto.

If R isaring and f is a one-to-one mapping from R onto a set S, then § can be
made into a ring isomorphic to R. For example, multiply in S by

x-y = fif-1(x)-f1).

A probability measure P on a Boolean ring R 1is a function P from R to the
closed interval [0,/] such that P(I) =1 and P(aVv b) = P(a) + P(b) whenever ab = 0.
This last property is the finite addirtivity of P. There is a stronger property sometimes
required, called o-addirivity, but we will not need it. An arom in a Boolean ring is an
element a suchthai a#0 and if b<a,then b=a or b=0. Thering is atomic if
every element contains an atom. Finite Boolean rings are always atomic, and the ring of
Borel sets of Euclidean space is atomic. If a is an atom in a Boolean ring, then P
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46 Derivation of conditional events

defined by P(b) =1 if a<b and P(b) = 0 otherwise, is a probability measure on R. If
a is not an atom, then P is not a probability measure, since for 0 # ¢ <a, P(ac’) =0 =
P(a) = P(ac), hence additivity fails. (See, however Section 2.2)

22 Conditioning operators

As stated in Chapters 0 and 1, the main goal is to define objects of the form "a
given b", denoted (a|b), for a and b clements of a Boolean ring R. Although the
operaton (-]-) on RXR is termed measure-free conditioning, the derivation implicidy
involved probability measures. We wish to define (a|b) in such a way that for any
probability measure P on R, it is possible to assign the conditonal probability P(a|b)
to (a]b) without ambiguity. In this spirit, the theory of measure-free conditioning
developed here is compatible with probability theory. If this compatibility condition is
relaxed, then the door is open to cother types of conditional objects. Lewis' Triviality
Result is established precisely within this probability compatibility condition. The
probability compatibility requirement is appealing, for example, in expert systems since th
strengh of the production rule "if b then a" is usually quantified by the conditional
probability P(a|b). A typical example is the Markov random field model of Lauritzen
and Speigelhzlter (1988). But measure-free conditional events compatible with probability
can be used to investigate other non-probabilitistic conditioning as well The recent work
of Dubois and Prade (1991) is relevent.

In view of previous work on measure-free conditionals, it sec.as that the coset form
is a reasonable one. In the following, we will amrive at this form from an axiomatic
approach.

We are going to search for maps f: R xR onto some space S which capiures the
basic aspects of conditioning compatible with conditional probability evaluations. A value
(a,b) of f will be called a (measure-free) conditional event. Our strategy is this. The
mapping f will be required to satsfy a set of axioms, or requiremeats. Since S is
unknown, we will work on the domain R xR of f, examining the partiton on it induced
by the equivalence relation (a,b) ~ (c,d) if fla,b) = flc.d). A version of f is then
obtained by assigning to each (a,b) its equivalence class F(a,b). Note that

(R x R)[f] -+ fIR ¥ R) : F(a,b) +fla,b)

is a one-to-onc comespondence. Thus if all f satisfying the axioms induce the same
partition of R X R, then

F : R xR -+ (R x R)if]
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is a canonical form for f. This program will be carried out by examining what each f{.,b)
must be like, for each b in R.
Any "conditioning" operator f should at least possess the following threz properties.

1) fRI) 1is a copy of R, that is, ., I) is one-i =9e. This satisfies the
requirement that conditional events should be generalizations of ordinary events.

(2) For (a,b) in R xR, fla,b) = f(ab,b). This says that conditioning 4 on b is
the same as conditioning ab on b. '

(3) For any probability measure P on R, Q((fa,b)) = P(a|b) defines an extension
of P to WP = {fla,b) : P(b) > 0}.

That @ is well defined requires that for fla,b) and fcd) in WP with
fla,b) = flc,d), one should have P(a|b) = P(c|d). For Q to be an extension of P also
requires that R be contained in WP' A weaker form of (3) is this. -

(3") Iff(a,b) = flc,b) then P(ab) = P(cb) for all P for which P(b) > 0.

By Lemma 1 below. (3') is equivalent to

(3") If fa,b) = fic,b), then ab = cb.

It is reasonable to postulate that conditional events with different antecedents are
different, namely

4) If fab) =fcd),then b=d.

A weaker form of (4) is
4 1f f(0,b) = flc,d), then b = d, and if f{b,b) = f(c,d), then b =d.

In conjunction with (3) or (3'), (4') becomes

@™ If f(0,b) = flc,d),then b=d and c¢d =0, and if fib,b) = flc,d), then b =d
and cd = d.

We need some technical lemmas. To construct Dirac-like probability measures on
arbitrary Boolean rings, we spell out the following procedure.

Lemma 0. Ler R be a Boolean ring. Let ay, ay, . .., a, be non-zero mutually disjoint
elements of R, and let oy, 0, ..., 0 bein [0,1] with ¥ o5 = 1. Then thereis a
probability measure P on R such that if Viey @ s b and (V; eJ a;) =0, then P(b) =
Vies %
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Proof. By Stone's Representation Theorem, we may identify R with a subalgebra
of the algebra of all subsets of some set Q. Thus g; is a subset of . Since each g; is
nonempty, pick @, € a;, and let P = %; 048, where &; is the Dirac probability with mass
oneat @, givenby &(®) =1 if o, e b and 0 otherwise. It is easy to check that P is
a probability measure on R with the desired property.

Lemma 1. Let R be a Boolean ring. If P(ab) = P(cb) for all probability measures P
on R such that P(b) > 0, then ab = cb.

Proof. Suppose that ab # cb. Then either (ab)(chb’) # 0 or (ab)’(cb) # 0.
Suppose (ab)(chb’) # 0. In view of Lemma 0, let @€ (ab)(cb’) #0, we Q. Let P be
the Dirac probability measure on the set of subsets of Q with mass I at ®. Then
P(ab) = 1, P(b) > 0, and P(ab) # P(cb) =0. ) o

Lemma 2. Let R be a Boolean ring, and let a, b. ¢, d be elements of R with b#0#d.
The following are equivalent.

(i) P(a|b) < P(c|d) for all probability measures P on R for which P(b) #0 #
P(d).
(i) Either ab=0,0r d<c,or ab<cd and c¢’d<a’b.

Proof. Assume (). If ab =0 or d<c, then obviously (i) holds. Suppose that
ab<cd and c¢’d £ a’b. Using those two inequalities and the fact that for ¢t 20 and
P(y) 2 P(x),

Px)/P@) S [P(kx) + J/IPQY) + 1],

we get

P(a|b) = P(ab)/P(b)
< [P(ab) + P(cd) - P(abcd))/[P(D) + P(cd) - P(abcd)]
= P(cd)/P(b V cd) =P(cd)/P(ab V a’b V cd)
= P(cd)/P(a’b V cd) < P(cd)IP(c’d V cd)
= P(cd)/P(d) = P(c|d).

Now assume (i), and that neither ab = 0 nor d<c. Then ab#0 and c¢'d#0.
First, we get ab < cd. If not, then (ab)(cd)’ # 0. If (ab)(cd)’d # 0, view R asa
subalgebra of the algebra of subsets of a set ©,and let we Q with we (ab)(cd)’d. The
restriction of the Dirac probability measure P on the set of all subsets of £ given by

.)
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P(w) =1 has the property that
P(b) = P(d) = P(ab) = 1,

and P(cd) =0. Thus P(a|b) =1 while P(c|d)=0.

If (ab)(cd)’d=0,1let y and @ be elements of Q such that ye (ab)(cd)’ and
we c’d. Note that y# . Giving ¥ and ® each mass 1/2 yields a probability measure
on the set of all subsets of © whose restricion P to R has the property that P(a|b) =
P(ab)/P(b) 2 1/2; while P(c|d) =0.

The proof that ¢’d<a’b is similar. o

The following corollary is immediate.

Corollary 1. Let R be a Boolean ring and a, b, ¢, d bein R with b#0#d. The
following are equivafent.

(i) P(a|b) = P(c|d) for all probability measures P on R for which P(b) 0 #
P(d).
(i) Either ab=cd=0,0r bsa and d<c,or ab=cd and b =d.

In view of Lemma 1, we see that if f satisfies (3), then it satisfies (1). Indeed, if
fla, 1) =f(c,]), then P(a) = P(c) for all probability measures P on R, and hence a=c.
Thus f(-,I) is one-to-one on R, and R is identified with f(R,I). Also it follows from
Lemma 1 that if fla,b) = fcd), then ab = cd. Thus (2) and (3) are the basic
requirements for conditioning operators.

Theorem 1. If f satisfies (2) and (3), then for each b, RI[.,b)] = RIRb’.

Proof. It suffices to show that Rb’ and the kemel of f(-,b) define the same
equivalence relation on R. Let @ and ¢ bein R. Then fla,b) = f(c,b) if and only if
Sflab,b) = flcb,b) (by (2)) if and only if ab =cb (by Lemma 1) if and only if a + Rb’ =
c+Rb’. 8]

Some remarks are in order. First, since f(R,b) and R/Rb’ are in one-to-one
correspondence, in fact by a + Rb’ - f(a,b), and R/Rb’ is a ring, f(R,b) becomes a ring
isomorphic to R/Rb’. Second, note that the mapping

RXxR-R/Rb’ : (a,b)-+a+ Rb’

does satisfy (2) and (3). See Section 2.3 for more details.
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[} It remains to describe all f satisfying (2) and (3). Theorem 1 gives a description ‘
for such f locally, that is of each f(-, b). Each f{-, b) induces the same partition on R,

{‘5 namely into cosets of R/Rb‘. However, two such f do not necessarily induce the same

i partition on R X R. In fact, let f be definedon RXR by fia,b) =a +Rb’, and define

1 g by g=f except that g(ab) =R whenever a A b =0. This does define a function. If

l E fla,b) =flc,d) anda Ab=0,then ¢ Ad=0. Now f(-,b) and g(-,b) both induce the

partition of R into cosets of Rb’, but do not induce the same partition of R X R, as is
[ obvious. Furthermore, f and g satisfy (2) and (3). The problem is that g(a,b) = g(c,d)
does not imply that b = d. If this latter condition is satisfied, that is, if we assume
E property (4) in addition to (2) and (3), then any two such fs are equivalent in the sense
that they determine the same partition of R X R. Condition (4) makes the f(R,b)'s be
l mutually disjoint, and (2) and_ (3) make each be in one-to-one correspondence _with
R/Rb’. So any f satisfying (2), (3), and (4) is equivalent to the map defined by
(‘ (a,b) = a + Rb’. Thus we have the following theorem.

Theorem 2. Let f satisfy (2), (3), and (4). Then f is equivalent to the map g defined by

U gla,b)=a+ Rb’. a]
{ ' If (2) and (3) are assumed, then something a little weaker than (4) will suffice. l
[ ) Theorem 3. The the conditions (2), (3), and 4’) imply (4). That is (2), (3), and (4’) are
equivalent to (2), (3), and (4).
L Proof. Assume (2), (3), and (4'). Suppose that fla,b) = fic,d). Then there is a
probability measure P on R such that P(b) # 0 # P(d). By Lemma 2, either (i) b = 4,
L or(ii) b<a and d<c,or (iii) ab = ¢d = 0. In case (ii),
fla,b) = flab,b) = f(b,b) = flc,d),
!
L and (4') implies that b = d. In case (iii),
{1 fab) = 0) = fic.d),
l ; and (4') implies that b =d. Thus b = d in any case, and the theorem follows. 0

2.3 Conditional events

The analysis of Section 2.2 has led us to a canonical form for conditional events. .’
This form will be used throughout this book.
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Definition. Let R be a Boolean ring. For a and ‘b in R, the (measure-free)
conditional event "a given b", written (a|b) s the coset a + Rb’. The space
UpeR RIRb’ of all conditional events is denoted by R|R. Itis sometimes referred to as
the conditional extension of logic.

As we will see, the union U, _p R/Rb’ above is a disjoint one. That is,
(R/IRb’YN(R/IRA") = ¢ for b # d. The function flg,b) = a + Rb’ satisfies all the
requisite properties discussed in the last section, including the property that fla,b) = fic,d)
implies that P(a|b) = P(c|d). There are man); "conditioning operators" which are not
“probability compatible”. Examples are

fa,b) = ab,
and

flab)=(-a)=b"Va.
More generally, take
fla,b) = ab Vv db’

forany d in R. Then for d = 0, we get fla,b) = ab, and for d = I, we get fla,h) =
b’ Va. These cannot be compatible with probability by Lewis' Triviality Result in
Section 1.1.

We will now look at some of the properties of (a|b). The function fla,b) =
a+Rb’ on RxR will be denoted by (-]-). Thus (-|:) is a function from R xR
onto Uy » RIRb” = R|R. '

(1) The function (-|b) is a homomorphism from the ring R onto the quotient ring
R/Rb’. This quotient ting consists of all cosets of the form a + Rb”, or (a|b), b fixed.
These cosets partition R, that is, two cosets (a]|b) and (c|b) are equal or disjoint, and
every element of R is in some (a|b). In fact, a isin (a]b). Thus to check that two
cosets (a|b) and (c|b) are equal, it is enough to get one element in common. Note that
(0|0) =0+ R =R is a coset and leads to the trivial quotient ring R/R, a ring with only
one element.

(2) (-]I) is one-to-one on R, and in fact is an isomorphism from R to
(R]1) = R/RO, which is identified with R itself, cosets of RO = {0} being of the form
a+ {0} = {a}.
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_ (3) Since
- a+Rb’' =a+ab’ +Rb’

= a(1+b’) + Rb’
=ab + Rb’,

we get that (a|b) = (ab|b). This is just property (2) in Section 2.2.

(4) In R, a closed interval [a,b] consists of all ¢ such that @ < ¢ <b, and recall
that x <y if xy = x. When we write [a,b], we mean implicitly that a < b. Cosets of
principal ideals in Boolean rings and closed intervals are the same thing. In fact, (a|b) =
{ab,b -+ a], or [ab,avb’], and any closed interval

[a.b] = (a|b’ Va) = (ab]b’ V a).

[ S

—ereeon

To see this, fora + rb” ina + Rb’,

o

ab(a + rb’) = ab,

E and

: (@+rb"Yb'Va)y=a+rb'®’'Vva)y=a+rb’.

'i'hus (a]b) clabb’ Val. For ab<c<b’ Va,

k c=abV(clab)")=ab+ca’b’,

U which is in ab + Rb’ = a + Rb’. Thus (a|b) = [ab,b’Va). For an interval [a,b] =

{ab,b],
(ablb’ vay=[ab Vv ®’ Va)® Va) ¥ (ab®d’ Va)l=
[ab,(ba’) V ((ab) A (b° V a))] = [ab,(b A a”) V (ba)] = [ab,b).

This fact that cosets of principal ideals and closed intervals are the same things

gives nothing new except the, perhaps important, realization of conditional events as
intervals [a,b]). Such an interval has a ready interpretation, in fact, a ready meaning - the
set of all elements of R between a and b. (Remember, a <b.) The interval [a,b] is
the conditional event "a given (b” V a)", and the interval [ab, b’ V a] is the conditional
| event "a given b", or (a]b). Thinking of a conditional event as an interval has perhaps
- more intuitive appeal than thinking of it as a coset @ + Rb’. In any case, it is convenient
- sometimes to visualize a + Rb’ as all sets between ab and a Vb’.
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Conditional events 53

The following property of cosets is fundamental enough for us to be called a
theorem.

Theorem 1. The two cosets a + Rb’ and ¢ + Rd" of R are equal if and only if ab =
cd and b=d.

Proof. If ab =cd and b = d, then clearly the two cosets are equal. Now suppose

that
a+Rb=c+Rd.
Then
ab=cd+rb’,
O

abb = cdb + rb’b = ab = cdb.
Thus ab < cd. By symmetry, cd < ab, whence ab = cd. Now
ab+ b’ =cd+sd’ =ab+ sd’,

so b’ =sd’, whence b’ <d’. By symmetry,d” <b’,s0 b=d. o

This theorem exhibits all the relevant properties of our conditioning operator (-] -).
It asserts that (a|b) = (c|d) if and only if ab=cd and b=d. Inparicular, if (a|b)
= (c|d), then

P(a|b) = P(ab)/P(d) = P(c|d).

If a function f is equivalent to (-]|-) in the sense of Theorem 2 of Section 2.2,
then f has the property that fla,b) = flc,d) if and only if @b = ¢d and b = d. Further,
any function f having this property is equivalent to (- |-). .

There are two forms for conditional events that are equivalent to ours that are worth
considering. First is the form proposed by Schay (1968) and DeFinetti (1972). Let R be
a ring of subsets of some set €2, and define g on RxR by gab)(w)=1 if w isin
ab,0f o isin a’b,and u for @ in b’. Thatis, g(a,b) is a function from  to
{0.1,u}, where the "u" stands for "undefined". Clearly g(a,b) = g(c,d) if and only if
ab=cd and b=d,so g isequivalentto (-]|-).

Another form for conditional events that is equivalent to the coset one adopted here
is given by f(a,b) = (abb). Clearly, fla,b) = f(c,d) if and only if ab = cd and b = d.




r

(=2 owm o~

pre———

e
.

T

-

-

54 Derivation of conditional events

Thus conditional events are pairs (a,b) with a < b. This form has the appealing
interpretation that conditional events are events, (a,b) being viewed as the event a in the
subring Rb of R, and this being viewed as different from the event a in the ring R.
That is, it is the pair (a,b). The space in which it is an event must be kept track of.
Another advantage of this realization of conditional events is that pairs are simpler to
visualize and to manipulate than cosets. .

We remark that (a}b) can be realized as the set of all éolutions x of the equation
xb = ab, which is, of course all those elements between ab and a V b’. Using other
binary operations than ¢{a,b) = ab, and considering the set of all solutions of the
equation @(x,b) = ¢{a,b) gives other formulations of conditional events, and a way to
extend the concept to algebraic structures more general than Boolean rings. (See Chapter
8.)

Conditional events (a|b), that is cosets a + Rb’, can be expressed in terms of
filters of R. A filter in the Boolean algebra R is a non-empty subset F of R such that
if a and b arein F,then abe F,andif ae F and a<b,then be F. The relation
between ideals and filters is that F is afilterin R ifandonly if F' = {I +x:x € F}
is an ideal in R. Given a filter F, an equivalence relation is defined by a = b if there is
an element fe F with af = bf. Letting [a] denote the equivalence class containing a,
the relation with cosets is expressed in the equation

[al=a+F’

For principal ideals, the situation is particularly simple. For for b € R, the set
Rvb=(rvb:reR} isa filter. It just consists of all elements x such that b < x.
Further, (R V b)’ = Rb’, and so in this case,

(a|b)=[a) =a+ Rb’.

Now that we have conditional events (a|b) idewified as cosets a + Rb” of R, we
must establish logical operations between them, and this will be caarried out in Chapter 3,
where the ring operations of R will be extended to its cosets. However, conditional
events, as subsets of R, can be combined via union and intersecton as well as other
ordinary set operations. These, of course, are not extensions of the ring operations of R,
but may be of some interest in their own right. The ordinary set operations on conditional
events with the same antecedent are of course well understood, since the cosets of an ideal
Rb’ partidon R. For example, the intersection of two such cosets is eithcr empty or the
cosets are identical. For cosets with different antecedents, the situation is a bit more
complex.
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Theorem 2. The following hold.

() (a]b) n (c|d) is the coset ((ab V cd)[(b V d)) if abd = cbd, and is empty
otherwise.

() @|b)c(c|d) ifandonlyif cd<ab and aVb’  ccvd’.

(3) (a|b)v (c|d) is a coset if and only if one is contained in the other, or

ab<cdsavVvb' <scvd’,
or
cdsab<cevd Savb’.

In the last case, for example,

(@|b) v (c|d) = {cd|(cd V a’b)).

Proof. (I)If a + rb’ = ¢ + rd’, then multiplying through by bd gets abd = cbd.
this latter equality implies easily that

abVed<(@vb)Acvd).
The coset (a|b) is the interval [ab, aVb’] and (c|d) = [cd, cVd’]. It follows that
(alp)n(cld)={ab,aVvb'Infcd : d’]
=[abVed, (@Vb’)A(cVd)]
= ((ab Vcd)| (b V d)),

again using abd = cbd.
Viewing cosets as intervals immediately yields (2) and (3). o
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CHAPTER 3
LOGICAL OPERATIONS ON CONDITIONAL EVENTS

In this chapter, logical operations between conditional events are defined, extending
Boolean operations of the base ring R. As in most extension problems, such an extension
is not unique, and the one chosen demands justification. From a semantic viewpoint, the
system of logical operations derived here corresponds to Lukasiewicz's three-valued logic.
A comparison with other proposed operations is given in Section 3.5. A discussion of the
possibiblity of deriving logical operations for conditional events in an axiomatic setting is
in Section 3.4. The analysis in this chapter is directed toward Boolean rings, with more
general algebraic structures considered in Chapter 8.

3.1 The extension problem

As established in Chapter 2, for g, b € R, by the conditional event "a given b", we
mean the coset @ + Rb’, and use the notation (a]b) for it Since conditional events are
generalizations of events, with (a|I) corresponding to the ordinary event @ in R, the
logical operations among them should be extensions of the ring operations. That is
(@) + (b]1) mustbe ((@+ b)|I), and so on. There are various ways of doing this. It
has been noted at the end of Chapter 2 that ordinary set operations on conditional events
are not appropriate. The space R|R of conditional events is the disjoint union U R/Rb’,
with the union over all b € R. We have in each R/Rb’ the usual quotient ring operations
which come from the operations of R. What is needed are operations combining cosets
from different quotient rings, that is, combining elements from R/Rb” and R/Rd’ with
b #d, and of course with the result of such a combination being a coset of a principal
ideal. This is not a standard ring theory operation, and has been largely avoided. For
example, Hailperin (1976) just called R|R a partial universal algebra (see, for example
Gritzer, 1968), and considered logical operations only between elements of the same
quotient ring. That is clearly unsatisfactory. We will define operations between any two
cosets of principal ideals, and investigate the resulting algebraic structure of R|R in
Chapter 4.

For any ring R, its operations + and - induce corresponding operations on subsets of
R. Namely, for subsets A and B of R,
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A+B={a+b:aech be B},

and

AB=1{ab:aecA,be B}

We have two other commonly used operations for Boolean rings,a Vb =a + b + ab, and
a’ =1 + a. These extend to set operations as well, namely = -

AVB={a+b+ab:aecA, be B}, and
A'={a’ :aeA)
A convenient fact, and one easily checked, is that for subsets A and B of R, DeMorgan's

laws hold:

(AB)Y' = A’ VB’,
and
(AvB) =A'B’.

We have already been using set addition in writing down cosets: a + Rb’ means
{a} +Rb’, whichis {a + rb’ : r e R}. Now coset addition in each quotient ring R/Rb”
is just this set addition. Cosets of R/Rb” are added by the formula

(@a+ Rb") + (c+Rb")=(a+c)+Rb,
but this coincides with the set addition above since
@+rb’)+(c+sb’)Y=(@+c)+ (+s)b

is in (@ + ¢) + Rb’, and the other inclusion is equally as easy to check. Further, this
addition is well defined - set addition is certainly well defined, and if

a+ Rb" =x+Rb’
and
c+Rb" =y +Rb’,
then
(@+c)+Rb =(x+y)+Rb’.

These remarks for coset addition are valid for any ring and any ideal I, not just Beolean
rings and principal ideals Rb’.
It is not generally true that coset muldplication is set multplication. That is, it is

o




o bmamna,
Vasscense

Vet
e

Cennn, wit

U [P - [y hasimre M,
M e ) b trassvend -

aghshddatng I ANSINY
Cvuun-l Vormaracn Wrareorar (,......-I
.

[——
Geeeeine

Conditional logical operations 59

not true for all rings that set multiplication of (@ + 1) and (b + I) is ab + I, the product
of the two cosets (@ + I) and (b + I). However, it is true for Boolean rings, and in fact
for commutative von Neumann regular rings. For Boolean rings, an arbitrary element of

@+DB+D is

(@a+d)b+j)=ab+aj+bi+if

-

with 7 and j in I. Thisisclearly in ab + I. On the other hand for
ab+keab+],

taking { = ka’ and j = k + kba” puts ab + k in the form ab + aj + bi + ij. So coset
multiplication in Boolean rings is just set multiplication. This unusual fact suggests that
perhaps set addition and multiplication are appropriate operations on any pair of elements
of R|R. Similar remarks hold for the set operations “ and V on R|R.

3.2 Conditional logical operations

First we will show that R|R is closed under the set operafons ‘, +,
multiplication or 4, and V. This will give us an "algebra" of conditional events, and its
properties will be subsequently investigated. It is convenient to note first that for ideals 7
and J of a Boolean ring R, the product IJ = {ij:iel, jeJ} 1is indeed an ideal.
Cleatly, InJ isanideal,and InJclJ. For x in InJ,x=x-x isin IJ,so I/ =
InJ. Since sums of ideals are ideals, the following theorem then implies that sums,
products, and disjunctions V of two cosets are cosets.

Theorem 1. Let R be a Boolean ring and let I and J be ideals of R. Then

(D (@a+D" =@ +1D,

@2 @+D+G+N=@+b)+1+J,

B3 @+Db+D=ab+bl+aJ +1,

4 @+ DHhvb+D=a¥b+b'I+a’J+1J

Proof. For (1),
(a+D"={(a+i riel}=
{I+a)y+i:iel}=a’ +1I

For (2),
a@+D+@G+N=(a+i+b+jricljel}=
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{(@a+b)+i+j:ielLje=(@+b)+I+J. d
Past (3) is more difficult. An elementin (g + D + J) is of the form
(@+i)b+j)=ab+bi+a+ij

which is clearly in ab + bl + aJ + IJ. The other inclusion is the difficult part. First, we
will establish it for principal ideals. So let 7 = Rx and J = Ry. An clement in
(a + Rx)(b + Ry) is of the form

(a + )b + sy) = ab + asy + brx + rsxy,
and an element of ab + bRx + cRy + RxRy is of the form
ab + bix + auy + vxwy.

Let z = vuxy + txb + uya + ab. Then letting

r=(z-axy+o(l-y),

and
s=({-bxy+uw(l-x) d

puts ab + asy + brx + rsxy in the form ab + box + auy + vxwy. This is a bit tedious
but straightforward to check. Thus we have

(a@a+Db+N=ab+bl+al+1]
for principal ideals. For arbitrary ideals I and J, we need
ab+bl+aJ+c@+nDb+J)
That is, we need an element of the form ab + bu + av + wx to be of the form
ab + bi + aj + ij,

where i,u,and w arein I,and j,v and x arein J. Now

Ru + Rw=R(u + w + uw),

as is easily checked, and similarly Rv + Rx = R(v + x + w). Let )

eE=Uu+w+ uw
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f=v+x+wx

Then ab + bu+ av + wx isir. ab + DRe + aRf + ReRf, which, by the principal ideal
case, is (a + Re)(b + R¥, and which, in turn, is contained in (a + I)(b + J). This proves
part (3).

For (4) we use DeMorgan's laws and (3). We have

-

@+DVvE+NH=[@ +n0" +N’

=l+a’b +b'I+a'J+lU=avb+b'I+a’J+1]. 0

Several comments are in order. We have, fcr example, the formula
@+Db+N)=ab+bl+al +1.

There is no question of the product (a + N +J) being well defined. It is just the
product of the two sets a + I and b + J. If representatives are changed, that is, if a is
replaced by xand b by ysuch that a+ I=x+ 1 and b +J =y + J, then

a<+hb+N=x+DOo+N=xy+y +xJ+1J.

Similar remarks hold for the other operations. Since addition, multiplication and
disjunction on R are commutative and associative, their extensions to subsets of R are
commutative and associative. Multiplication and disjunction are also idempotent, that is,
xx = x=xVx Inparticular, these three binary operatdons on the set of all cosets of R are
both commutative and associative. Thus we can perform these operations on any (finite)
number of cosets with the result independent of order or association.

The operations ’, +, V, and A or multiplication were defined by extending the
conesponding operations of R to subsets of R. Back in R, the operations satisfy the
following relations: -

WD x'=1+z

@) x+y=xyvxy’,

() () =x"vy and@xVvy) =x"y’,
@) x(yv2)=xy Vg

(5) xVy2) = xVEV2),

6) x(y + 7) = xy + xz,

(M xVy=x+y+xp.

For cosets of R, only (1) through (5) hold, and those are easily checked using the
theorem above. We have already noted that DeMorgan's laws (the properties in (3)) hold
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for any subsets of R. An example of the failure of (6) for cosets of principal ideals is
given below, and (7) does not hoid for the cosets @ + R and I + Ra’, where a# 0. In
that case, we have

{a+R)V{ +Ra’)=aVl+Ra,

@+R)+({+Ra’)+@+R(I +Ra’y=aVl+R,
and
aVl+Re"#avVv1l+R,

since a # 0.

Finally, Theorem 1 holds for commutative von Neumann rings with little change in
the proof. See Chapter 8.

We turn now to specializing these results to the case where the ideals are principal.
In that case, we have the three binary operations, and the unary operation * on R{R. We
now change to the notation (a|b) for a + Rb’. The following theorem states the basic
facts about the operations on the space R |R of principal ideals.

Theorem 2. The following hold.

() (alb)" = (a’|b),

() (a|b) + (c|d) = (a + c|ba),

@) (a|b)c|d) = (ac|a’b V c’d V bd),
@ (a|b)v(c|d)=(aVc|abVcdV bd).

Proof. The proof of (1) is easy. For (2),
(alb) + (c|ld)=(@+Rb’)+(c+Rd’)=a+c+Rb" +Rd’.
Now we have observed in the proof of the previous theorem that Rx + Ry = R(x V ).
Thus
Rb’ + Rd’ = R(b'Vd’) = R(bd)’.
For (3),
(a|b)c|d) = ac + cRb’ + aRd’ + Rb'Rd’,

using (3) of the previous theorem. We need the ideal Rb’c + Rad’ + Rb’d’ to be the
principal ideal R(a’b Vc¢’d V bd)’. Itis the priricipal ideal R(b’c V ad’ Vb’d"). Itis
routine to show that

(@bv d¢ &' = b'cvVad Vb'd'.

.\
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For (4),
@by vic|d =avc+c'Rb’ +a’Rd’ +Rb'd’,
using (4) of the previous theorem. We need the ideal
Rb’c’” + Ra'd’ + Rb'd’ .

to be the principal ideal R(ab V cd V bd)’, and it is the ideal R(b’c’ V a’d’ Vv b’d’).
Again, it is routine to check that

(@VedVbd) =b'c’yva’'d’ vb'd. ' o

Note that (0|I) is the zero of R|R, that is, is the additive identity, and that ( |1) is
the multiplicative identity. That is, (0|I) is the only element such that

©O]1) + (a|b) = (a|b)
for all (a|b), and (I]1) is the only element such that for all (a|b),

(111)(a|b) = (a|b).
Indeed,
©|D + (@|b) = (0 +a)|1-b=alb,

and
(|I)a|b)=al(I’'Iva'bVb)=alb.

If (x|y) were another zero, then
O + x]y) = 0] = &]y).

Similarly, (1]1) is the only multiplicative identity for R|R.
Elements in R|R do not have negatives, in general. If

(a|b) + (c|d) = (a + ¢)|bd = (0| ]),

then bd = I, s0 b = d = 1. So the (a]b) with negatives are exactly the (a]l), whose
negative is itself. Further, multiplication of sets does not distribute over addition of sets,
even for cosets of principal ideals. For example,

(o) |d) + AN =T [p)T|d) + A|bY|S),

the first being (0|df), and the second being (0|bdf). Just pick b, d, and f so that
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- df # bdf. However, multiplication does distribute over Vv, and V over multiplication, as .)
[ ; we have observed above for any cosets.
In any case, the "algebra" R|R is far from being a ring under the operations of

1
I : multiplication and addition. It does, hcwever contain isomorphic copies of all the R/Rb’,
since
l (a|b) + (c|b) = (a + c)|b,
{ and .
f @618 = el
B The operations in R|R have many interesting properties and interrelations. We

record some of the more fundamental ones here. Their proofs are straightforward. In the
following, we will use just x for the element (x|I) in R|R.

i
£
Theorem 3. (Bayes) Let a; + a; + . . . % ay = I be a partition of 1. In particular, the a;
[ z are mutually disjoint. Then for b in R,
ﬂ () b=(blayay + (blaay + . .. + (blayay,
L @) (g]b) = (((b|g)ay|b), ‘
j’ 3) (g;|b)b = (bla)a; = ad,
' @ (a|b) = ((bla)a)|((blaya; + (bladay + . .. + (blayay). o
[ In particular, from (4) we get
{J b = (bla)a + (b|a")a’
and
i’ (a]b) = ((b|a@)a)|((b]a)|a + (b]a")a’).

, Recall that logical (material) implication b - a in R is defined to be b’Va. We
] . denote (b - a)(a - b) by a — b. These operations extend to R|R in the same manner as
the others. We define

(cld) - (alb) = {y-x:ye (c|d),xe (a|b)},
¢ and

cld) — (a]b)

in the obvious way.

In the following theorem, parts (1) through (5) give connections of V and A with .
logical implication, parts (6) and (7) are absorbing properties, while part (9) is a
decomposition property. Again, the verifications are straightforward.

-
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Theorem 4. The following hold.

() baa=@b)vd' =@®'|a)Va,
) (a}b) = ((b - a)|b) = (b~ a)(b|b),
@3) @|b)=®"|a")0|0) V(' ~a),
@ (c|d)y=@|b)=(c|d)’V (a|b) = ((cd - ab)|(c’d V ab V bd)),
) (c|d) — (a|b) = ((c|d) = (a]| b))(a|b) - (c|d)) i
= ((ab ~ cd)|bd) = ((a]b) + (c|d))’,
©) (a|b) = (a|b)((a|b) V (c|d)),
() (a]b) = (a|d) V (a|b)c|d),
8) (a|b) = (a|l) + (O|b). ' 0

3.3 An order relation and related concepts

The Boolean ring R has a partial order < givenby a<b if ab = a. Beinga
partial order means that < is reflexive, anti-symmetric, and transitive. Thatis,a<a,a<b
and b S a imply that @ = b, and finally, a S b and b < ¢ imply that a < c. The partial order
does respect multiplication and V, in the sense that if @< b, then ac <Sbc and aVe <
bV c. Further,a<b implies that b’ < a’. These properties are trivial to check.

We now define a partial order on R|R in the analogous way, and note some of its
properties. In particular, it will extend the partial order on R, identifying R with the
elements of the form (r|I). Note that, in his discussion on qualitative probability, Savage
(1972, p. 44) mentioned the lack of qualitative counterpart of P(a|b) SP(c|d). It is
necessary, even from a qualitative viewpoint, to compare "“interconditionals,” that is,
conditionals with different antecedents. See¢ also Koopman (1940), and our Chapter 5.

Definition. For (a|b), (c|d) € R|R,

(a|b) < (c|d)

(a|b) = (a]b)(c|d).
The relation < is indeed a partial order on R|R. Since
(a|b)alb) = (@2|a’b Vv a’b v b2) = (a|b),

we have (a|lb)<(alb),so £ is reflexive. I  (a|b) = (a|b)c|d) and
(c]d) = (c|d)(a|b), then certainly (a|b) = (c|d), so that £ is symmetric. Finally, to get
transitivity for <, if (a]b) = (a|b)(c|d) and (c|d) = (c|d)(e|/), then
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I? (a]b)elp = ((a|b)c|D)elp = .}
B (alb)((CIJ)(elj))= (alb)(cld) = (alb).

Thz partial order above depends only on the multiplicaiton in R|R being idempotent,
commutative, and associative. Finally, it should be noted that if

I ‘

(ajb) < (c|a),
{’ then .
! (alb) velnsclavelp
1 and
§; @)l < (c|d)els),

while it is not true that (a|b) S (c|d) implies that
- @]b) + (elN S (c|d) + (e]p.

We now give some useful alternate conditions equivalent to being <.

v
Neoonvocd

Theorem 1. The following are equivalent, and hence are all equivalent to (a|b) < (c|d). ‘ ;

() (a|b) = (a|b)(c|d),
@) @b’ 2(cld)’,

(3) ab<cdandc’d<a’b,
@) (c|d) = (c|d) V (a]b).

Proof. First we prove that (1) implies (3). If (a|b) = (a|b)(c|d), then

(a]b) = (ac|a’b V ¢’d V ba),
and we have
ab=ac(@a’bVvc’dVbd) = abcd,

, so that ab S cd. Also b =a’bVvc’dV bd, whence ¢’d < b, and so ac’d < ac’b. But
t ab<cd getsac’ = 0,s0ac’d = 0. Thus c¢’d < a’, and already we have ¢’d < b. Thus
5 ¢’d< a’b, and so (1) implies (3). Assume (3). Then ab < cd and ¢’d <a’b. To gt

]' (a]|b) = (a|b)c|d) = (ac|(a’b Vv ¢’d V bd),
! : we need first that ab = ac(a’b V ¢’d V bd). The last is acbd, which is indeed ab since .
{ ab < cd. Finally, we need b = (@’b V ¢’d V bd). Now

) @bVcdVbd =(@ VdbVc'd
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Butc’ Vd<b,and abd’ Scdd’ = 0,s0b<a’ vd. It follows that (3) implies (1).
Part (2) is equivalent to (1), using (3), and (4) is equivalent to (1) using DeMorgan's
laws and (2). o

®

Note that (3) implies that < is monotone in the first argument, that is, (a|b) < (c|b)
if a<c. More generally, if (a|b) S (c|d) then (a]b) < ((c V x)|d), as follows readily
from (3). This is not true for the second argument. For example, (a|b) and (a]bc) are
not comparable, in general. It is not true that ab < abc,so (a|b) is not < (a|bc), and it
is not true that a’b < a’bc, so that (a|bc) is not < (alb).

ST

Theorem 2. The following hold.

(1) 0sabs@|b)ys-a)sl.
(2) ab s (al|b)(bla) s (@ b).
B3 Ifaysay<... Say, then

Aresreven M Prsrantn, '..-—-"\' o————
LA ..

| SEOPOTe)

e

(a1]ax)(@2]a3) . . . (@p2|an-1)(Gr1]ad) = (a1]ay.

Sl
g
[oe]

@ (a]bo)(b|c) = (ab]c).

(]
any

Items (1) and (2) above give some connections between material implication and <,
with (2) being an immediate consequence of (1). Items (3) and (4) are called "chaining"
conditions, and (4) is a consequence of (3).

It is possible to give a formal characterization for our operations - and V on R|R.

Naoue

A systematic investigation of tie rational of our operations will be given in Sections 3.4

rrcnsmnch Bty Pratn ety
(SO

o and 3.5.
{3
(L Theorem 3. The mapping ¢ : R|R - R defined by ¢(a|lb) = b +a=b" Vaisa
‘V,A)-homomorphism from R|R onto R. That is,
i
& Pl(a|b) V (c|d)] = ¢la|b) V plcld)
£ ’ and
L ¢i(alb)c|d)] = pla|H)p(c|d).
: Proof. First, ¢ is well defined, and clearly ¢ maps R|R onto R. Now
L. ela|b) V(c|D] = paVclaVeVbd)=(aVcVbd) VaVe,
. taking a < b and ¢ < d without loss of generality.

®alb)Vlcld)= b va) v’ vo).
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Thus we need

(@aVevbd) Vave=@c'®’'vd'))VaVec=b'c’va’'d' vave .

tobe b’ Va vd’ Vc, which it clearly is. Similarly,

ol(a|b) A (c]d)] = ¢ajb) A Pic]d). -

Theorem 4. Let o and U be any operations on R|R extending - and V on R.
Suppose thas the mapping given by (a|b) -+ b’a is a (o, V)-homomorphism. Suppose

further that
(a|b)o(c|d) = (abed| ofa,b,c.d))
and
(@|b) v (c|d) = (ab V cd| B(a,b,c,d)),

where abcd < ofa,b,c,d) and (ab V cd) S Ba,b,c,d). Theno = - and U = V.

Proof.
¢l(a|b)o(c|d)} = glabcd| cda,b,c,d)) =

&’ va)d’' V)= alab,.cd) Vabed =
o(a,b,c,d)’+ abed .

Letr=a’bVvc’dVbd Then

@' va)d' Vvey=r"+rac=r" + abcd,
whence ofa,b,c,d)’ = r. Thus o = -. Similarly,

ol(alb) v (c|d)] = Blabcd)’ +abVcd =

b’vVvavd’Ve=b'Vebvd' Ved=b"'vd' ' VabVcd=
(b’ vd’)ab) (cd)’ + ab V cd,
the last two summands being disjoint. It follows that
Ba,b,c.d) = [(b’ Vd')ab) (cd)’]’ = bd V abcd,

and that u=V.
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Other operations for combining evidence

For inference purposes, it is sometimes appropriate to combine several pieces of
conditional information, that is, conditional events, using appropriate operations. If two
conditional events (a}b) and (c|d) arise from the same Boolean ring, then we have
various ways to do that now: multiply them, or use V,oruse + in R|R, or use other
operations in R|R. Then, for example, given a probability measure P on R, one could
calculate the probability of the resulting conditional event. But what if the events @ and b
came from the Boolean ring R, and ¢ and d came from the Boolean ring §? How do
we get a single conditional event capturing the essence of the two conditional events (a|b)
and (c|d)? One way is to do it is as for ordinary events. If R and S are Boolean rings,
then the Cartesian product R X S = {(r,s) : r € R, s € S} is a Boolean ring under the
componentwise operations. That is, just operate componentwise. Now if r is an event in
R and s isaneventin S,then (rs) isan event in, that is, is an element of, the Boolean
ring Rx S. Since Rx S is a Boolean ring, we can form (R x S)|(R x S). The objects of
interest are the two conditional events (a|b) and (c|d), or the pair [(a|b), (c|d)], with
a and b in R,and ¢ and d in S, say. This pair is an element of the set

RIR) X (S|S) = ((xy) :xe R|R,y € §|S)

of all pairs of R|R and S|S. But this set is in natural one-to-one correspondence with
(R x S)|(R x S) via the mapping

[a[b), (c|d)] = (@,c)] (B.4)).

The upshot is that the pair (a|b) and (c|d) of conditional events is associated with a
conditional event, namely one in the space (R x S)|(R x S). For any probability measure
P on R x S, one may assign the probability of [(a]b), (c|d)] to be P[(a,c)|(b,d)], which
makes sense.

Another way to combine evidence of the form above is this. Regard the Boolean
rings R and § as rings of subsets of Q; and €, respectively. Let

C={axb:aeR,be S},

that is, the set of all Cartesian products of elements of R by elements of S. Thus each
element of C is a subset of Q; x &y, or Cc P(Q; x ), the Boolean ring of all
subsets of Q; x Q. Now C is not a subring of the ring 2(Q, x Q,), as can be seen by
observing the the basic relations between union, intersection, and complement are given
by the formulas
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(@axb)’ =@ xPu(Q;xb"),

(a x b) n (c xd) = (ac x bad),
and
@xb)ucxd)=(@xb) n(cxd’.

However, there is a unique smallest subring R o S of 2(Q; X &) containing C, namely
the intersection of all those subrings containing C. The operations of the ring are then
just just the usual set theoretic operation of £(2; X £). For a,be R and ¢, de S, we
define

(a|b) x (c|d) = {exf: ee (a|b),fe (c|d).
But observe that

(exPHn®xd=ebxfd=abxcd
Hence
exfe(axcdlbxdye (ReS)|R «S).
That is,
(a]|b) x (c|d) = (ab x cd|b X d).

Note that if P is a probability measure on R ¢ § then
P[(a]b) x (c|d)] = Pl(ab x cd)| (b x d)].

As an illustration of the possibility to use this type of operation X among
conditionals in the problem of combining evidence, consider the well-known "penguin
triangle" problem in Al, as discussed for example in (Pearl, 1988).

Let

f={lying animals
b =birds
p = penguins,
so that (f|b) = "birds fly", (f" |p) = "penguins do not fly". For an analysis of this type of
information, see (Zadeh, 1985). It is appropriate here to combine the peices of evidence

(f]b) and (f'|p) via the operation X among conditionals. This is in line with familiar
situations in statistics. Now

(f1b) x (£" |p) = (b x £'p) | b x p).
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Thus P(fb x f'p|b x p) should be close to I for any reasonable probability P on
ReS.

3.4 Connections with three-valued logic

So far we have studied the logical operations on the space R|R from a syntax
viewpoint. In this section, we will investigate the semantic relation with three-valued
logics. To that end, we first discuss that relationship between Boolean algebras and
classical two valued logic. We then show that an analogous relationship exists between
R|R and three-valued logic. Since Boolean polynomials play a fundamental role, we
begin with a discussion of them and their properties that are pertinent to our situation.
This discussion is informal, but should be sufficient for our purposes.

An elementary Boolean polynomial in the n variables X,X,, ..., X, is Y Y,..Y5,
where Y; =X; or X;”. The symbol X;” should be thought of as the complement of X;,
and the elementary polynomial Y;Y>...¥; should be thought of as the product, or

conjunction of the Y;. We are using juxtapesition to indicate this conjunction, rather than
inserting the conjunction symbol A. There are 2® of these elementary Boolean
polynomials. A Boolean polynomial in the n variables Xy,X;, ..., X, is a expression of
the foorm E; VE,...V Ey, where the E; are distiact elementary Booiean polynomials.
Thus a Boolean polynomial is the (formal) disjunction of elementary ones. The empty
disjunction is allowed and is denoted 0. The order of the E; in the disjunction is
immaterial. (As an aside, the set of Boolean polynomials in the n variables
X, X5, ..., X, may be thought of as the Boolean algebra of all subsets of the set of
elementary Boolean polynomials in those variables.)

Here are some examples for the case n = 3. There are 23 elementary Boolean
polynomials, namely

XiXoXs, X17X0X5, XiXo'Xs, XiXoX3', X1'Xo X5, X' X0X537, XX X3', X1°X,'X3”.
The expression
f=X1XoX3 VXiXo X3 VX1 XaX3" V X1 XoX3’

is a Boolean polynomial in three variables having four elementary terms.
Generally, a Boolean polynomial in the variables X, X», ..., X, is any expression
formed from the X; using A,V and ’. For example, in the case n=3,

F=X1Xo VX2 X3 VX1X)) V(X537 VX)) XoX5”

is such an expression. However, manipulating this expression as if the X, were elements
of a Boolean algebra, and A, V, and * were the usual operations on it, onc may bring f
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into the form of a disjunction, or union, of elementary Boolean polynomials, and this form
is unique. This is the well known fact that every Boolean polynomial can be written in its
disjunctive normal form. We regard any two Boolean polynomials the same is they have
the same disjunctive normal form. This is the same thing as requiring that two are the
same if they induce the same Boolean function R® +R. The disjunctive normal form of a
Boolean polynomial is not usually the simplest form of that polynomial. For example, if
n = 3, the Boolean polynomial

XiXoX3 v X1X2'X3'V X X0 X3 v X1 XoX3',

which is in disjunctive normal form, may be more simply represented as X;. Our unions
of elementary Boolean polynomials are of course in disjunctive normal form.
The following proposition is clear.

Lemma 1. There are 22" Boolean polynomials in n variables.

The connection between Boolean polynomials and mappings is this. If f is a
Boolean polynomial in n variables and R is a Boolean ring, then f induces a map
f:R®aR by evaluation. Note that we use the same symbol f to denote a Boolean
polynomial as well as the function it induces on any Boolean algebra R™. This is
convenient, and should cause no confusion. For example, if n = 3 and

F=X3XX3 VX1 X2 X3 VX1 XoX3" VX "X0X3',
then the mapping f: R3 -+ R is given by the formula

flay, ay, a3) = a1a,a3 Y ayay’ a3 V aya,as” V ay’azas’.

Definition 1. A function R® » R is called Boolean if it is induced by a Boolean polynomial
in n variables.

There are a couple of pertinent elementary facts about about these evaluation maps
and elementary polynomials. First notice that there is a natural one-to-one correspondence
between elementary polynomials in n variables and n-tuples of 0's and I's. For n=3,
X1X5’X3 corresponds to (I, 0, 1), for example. An elementary polynomial takes the
value I on that n-tuple of (s and I's to which it corresponds, and takes the value 0
on all other n-tuples of O's and I's. Thus, given an n-tuple a of 0's and I's from a
Boolean algebra R, there is exactly one elementary Boolean polynomial e in n
variables for wkich e(a) = 1, and that e has value 0 on all other such n-tuples. This
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fact is the basis of the following lemma.

Lemma 2. For any Boolean algebra R and any n, distinct Boolean polynomial in n
variables induces distinct maps R™ - R.

Proof. Suppose f and g are Boolean polynomials in n variables and f#g. Then
there exists an elementary polynomial e in n variables such that e isaterm of f and
not a term of g (say). Now e(a) = I for exactly one n-tuple @ of O's and I's, and
fla) =1 while g(a@) =0. Thus the polynomials f and g induce distinct mappings from
R™ to R. ) o

Lemma 3. Let (0,1} be the two-element Boolean algebra. Then every map
f:{0, 13 = {0, 1} is induced by a Boolean polynomial in n variables.

Proof. There are 22° Boolean polynomials in n variables and 22" maps. Use
Lemmas 1 and 2. o

The previous lemma says that given any map
g: {0, 1}*- {0, 1},

there is a Boolean polynomial f in n variables inducing that map g. That Boolean
polynomial is easy to construct, given g. For each n-tuple a from {0, 1} for which
g(a) = 1, there is exactly one elementary Boolean polynomial e for which e(a@) = 1. The
Boolean polynomial inducing g is the union of those e. Thus, if

g:{0,1~{0,1)}
is presented by a table

(alt a ..., an) g(al: Gy e an)

then the Boolean polynomial inducing it is the union of the elementary Boolean
polynomials YiY,..Y; where Y;j=X; if g=1 and Y;=X; if =0 and
g(ay, ay, ..., ay) = 1. For example, for n = 3, if the table is
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ay G2 a3 8(ay, @y, a3)
000 0
0 0 I 1
010 0
100 1
01 1 0
1 0 1 0 §
110 1
111 0

then the Boolean polynomial is X X,'X3 v X3X5'X3”" vV X1XX3”.

Corollary. If R is any Boolean algebra and if f: R® - R is a Boolean function, then f is
completely determined by its action on {0, I1}™.

1et R and S be sets, and let £: R - S be any function. Then 7 induces a function
MR+ S" by the formula
tn(rl: r2)---srn)=(t(rl)lt(r2)r-'-1I(rn))-

Now suppose that R and S are Boolean algebras and ¢ is a homomorphism. That is, ¢ is
a function such that

KrVs)=1r) Vis),
Wr As)=1{r) A1(s),

and

(r') =1r)’
for r,s in R. In pamicular, #(0) =0 and #(I) = I, as may be checked. If j is any
Boolean polynomial in n variables, then since r is a homomorphism, we have
immediately that for (r;, 75, ...,7) € R?,

ﬂrh 2 ---, rn) =ﬂt(r1), t(rZ)r D) t(rn))-
This may be rephrased as follows.

Proposition 1. Letr R and S be Boolean rings and t:R~S a homomorphism. Let f
and g be a Boolean polynomials in n variables. Then the diagram




v
Yesocsnest

,.-4-3 Prom iy

Connections with three-valued logic 75

Rn-——-f——-'

R
o ‘t
L4 S

§"—&

commutes if and only if f= g.
Proof. Suppose that f=g. Since ¢ is a homomorphism, we have

@y, . @ )) = RH), .. K2 ) = ROy, .. @),

whence the diagram commutes. Now suppose that f and g are Boolean polynomials such
that the diagram commutes. Since #0) =0 and .I)=1,f and g mustinduce the same
map on {0, 1}*, which is contained in both R® and S Thus by Lemma 2,f= g. )

Now we specialize the results above to the case where S is the two element Boolean
algebra {0, 1}. In that case, the homomorphism t is called a truth evaluation on R. In the
diagram

R" f 'R

(0,1} ———{0,1)

¥y

if f is any Boolean polynomial, then the map ¥¢ induced by the Boolean polynomial f,
is called the truth function, or truth table of the Boolean function f. It of course depends
also on the homomorphism ¢, that is on a truth evaluation on R. More generally, any
function W: {0, 1}* = {0, 1} ‘s called a truth function, or truth table. So for the case
S = {0,1}, the result may be stated as follows:

Theorem 1. Let R be a Boolean algebra, let t be a truth evaluation on R, and let
f:R“=R, be a Boolean function. Then there is exactly one truth fun~tion
such that

‘PJOt" = tof,

namely W¥; = f. Conversely, given a truth function ¥, that is any mapping
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¥ {01 {01},

there is exactly one Boolean function f: R™ - R such that

Yot = tof,

namely that given by the Boolean polynomial f inducing W. In particular, there is a
one-to-one correspondence bwtween truth functions {0,1}* -+ {0,]1} and Boolean
functions R* 4 R. o

Finally, it should be noted that above, given f, the construction of ¥y is
immediate. If f is given as a Boolean polynomial, then there is no coraputation to be
made for the construction: ¥y is that same Boolean polynomial. In any case, f is
determined by its action on {0, I} inside R™, and given any function from {0, I} to
{0, 1}, we have specified earlier how to write down the Boolean polynomial inducing that
function. So the construction of ¥ from f is routine. Now given ¥ : (0, 1} -~ {0, 1},
write down the Boolean polynomial inducing ¥, and that gives the unique f such that
¥ of" = for. So not only do the requisite f's and W 's exist, we have an explicit
procedure for constructing them.

We are now going to generalize the results above to the conditional case. In
particular, R|R will play the role of R. First, we must decide on, and develop the relevant
properties of, the analogs of Boolean polynomials for the conditional case. That is, which
maps (R|R)® -+ R|R should play the role that Boolean maps R* - R play? Elements of
R|R are of the form (a|b), with a, b € R. This representation is unique if a is taken to
be contained in b, that is if ab = a. Any mapping (R|R)*+R|R takes an element of
the form fay|by, a3|b2, . . ., ay|by) to one of the form (a|b). Again, a is not unique,
but ab is, and thus ab should be a function of the 2n variables

(albl, a2b2, sy a,,bn, bl’ bz, ooy bn)

We require that this function be induced by a Boolean polynomial f of 2n variables.
Similar requirements are mandated for the existence of a Boolean polynomial g of 2n
variables yielding b. But the situation is not as simple as in the classical case. Different
Boolean polynomials can induce the same mappings on 2n-tuples of the form
(t1 T2, oo oy Ty Tyl, - - - » T2g), Where 73 S i A moment's reflection shows that two such

polynomials induce the same mapping on such 2n-tuples if and only if their elementary
terms are the same except for those of the form

YW Xieo YaYut . . Xun' oo Yo

These are precisely those elementary terms that are 0 on 2n-tuples of the form
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(C1sT20 « + +» Tp Tnyls - + - » Ton) Where 73 S 1. We call a Boolean polynomial in 2n

variables reduced if it contains no elementary terms of the form displayed above. It
should be clear that in our considerations here, only reduced Boolean polynomials need be
considered. Thus we are requiring that a functon (R[Ry*-R|R be given by two
reduced Boolean polynomials f and g of 2n variables. The polynomial f will consist
of some cf the elementary terms of g, so that f<g in that sense. Such a pair of Boolean
polynomials will be denoted f |g, and is called a conditional Boolean polynomial of 2n
variables. For any Boolean algebra R, a conditional Boolean polynomial of 2n variables
induces a function (R|R)® -+ R|R by the formula

(flg)(allblr aZle, ceey anlbn) =
ﬂalbl’ a2b27 s e ey anbn, bl, b2, c vy bn)lg(albli azbz’ “ees anbn’ bl’ bz’ e bn).

Lemma 4. There are 33" conditional Boolean polynomials of 2n variables.

Proof. A conditional Boolean polynomial is of the form f|g, with f and ¢
reduced and the elementary terms of f among those of g. The number of reduced
elementary Boolean polynomials of 2n variables is 37 To see this, note that for such a
polynomial, there are 2" choices for its first n entries. For those entries that are Xi,
there is only one choice for the (i + n)-th entry, namely X; For those entries that are
X;’, there are two choices for the (i + n)-th entry, namely X; or X;’. So there are 2
elementary terms in which i of the first n entries are X;’s. It follows that there are
indeed

Zi’=‘02’(,‘1) =3

elementary reduced Boolean polynomial 2n variables. For each such g with i
elementary terms, one has the choice of 2! fs. Thus there are

3% sifi = 33"
2i=o 2 [3“] I
gossible f|g's, and the proof is complete. o

Any Boolean algebra R contains the two element Boolean algebra ({0, 1}. We
denote this two element Boolean algebra by V. Thus inside R|R is
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and so inside (R|R)* is (V|V)". Now V|V will play the role here that V did in the
classical two valued case. The elements (0}1), (I1|1), (0|0) will be identified with the
truth values 0 (false), t (true), and u (undecided), respectively.

Lemma 5. Let R be any Boolean algebra. Distinct conditional Boolean polynomials
induce distinct functions (R|R)® - R|R. g

Proof. This follows from the observation that distinct reduced Boolean polynomials
induce distinct mappings on the set of sequences (r3, T3, ..., Ty, Tn,1, - - - » T2n) Of O's and

I's with r;Sr,.

Lemma 6. Every function (V|V)® - V|V is induced by exactly one conditional Boolean
polynomial in 2n variables.

Proof, There are 33 such functions. Use Lemmas 4 and 5.

Definition 2. A function (R|R)*-R|R is a conditional Boolean function if it is induced
by a conditional Boolean polynomial.

For a conditional Boolean polynomial f|g of 2n variables, the function
(R|R®-R|R it induces will also be demoted  f|g. Such a Boolean function
flg : R|R™ - R|R is determined by its action on (V|{V)". This follows from Lemma 6.

Let R and S be Boolean algebras, and let ¢: R +S be a homomorphism. Then
induces a function R|R - S|S, which we also denote by ¢, by the formula

1a]b) = (xtab) | #B).

Now 7 is well defined since t:R -+ § is a homomorphism so that #(ab) < #(b). The
function 7:R|R - S|S induces in the usual way the function : (R|R)* -+ (S|S). The
following proposition generalizes Proposition 1 to the conditional case.

Proposition 2. Let R and S be Boolean algebras, let t:R|R -+ S|S be induced by a
homomorphism from t: R~ S,and les flg and h|k be conditional Boolean polynomials
in 2n variables. Then the diagram
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(RlR)n__ﬂg__..R{R
" t

cornmutes if and only if f|g = h|k.
Prouf. Suppose that f|g = h|k. Then

H(f| £)((@1]b1), .- (Ga] B
= {15y, - Gy By, vy B)|8(81By, oy Grby, By, ..., B)]
= ((R@1D, ey by b1, <o D)) |18(G1DY, ., Gaby, By, .oy b))
= (a1dy), ..., Hanby), Kby, .., Kb))| g(tary), ..., Hayby), t(by), s 2(b)))
= (f|®)[((arby) |#(B1)), --., (#(0.a0) |#(by))]
= (f|@)t(ar1b1 | by); ..., Hanba| b))
= (f| )7 ((a1b1]by), ..y (@aba[BD))],

and the diagram commutes. Conversely, if the diagram commutes, then since ¢ is the
identity on V|V, viewed as contained in both R|R and S|S, the conditional Boolean
polynomials must agree on V|V, whence they are equal by Lemma 6. o

For the case n =2, a conditional Boolean polynomial f|g gives a binary operation
on R|R and one on §|S, and the commutativity of the diagram just says that
t:R|R-S|S 1is a homomorphism with respect to those operations. Thus t isa
homomorhism for any binary operation induced on R|R and S|S by any conditional
Boolean polynomial f|g.

Let ¢t be a truth evaluation on the Boolean algebra R. Thatis, t is a
homomorphism from R to the two element Boolean algebra {0,1} =V.

Definition 3. A truth evaluation on R|R is a function t: R|R » V|V induced by a truth
evaluation t on R by the formula

Ka|b) = («(ab)|1(b)).
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Note that we are using ¢ both for the truth evaluation on R and the truth evaluation it
induces on R|R. Viewing R|R as containing R, the truth evaluation on R|R induced by a
truth evaluation ¢ on R is an extension of ¢ to all of R|R. Viewing V|V as a subset of
R|R, a truth evaluation ¢ on R|R is the identity function on V| V.

Since V|V = {O|D), {|D), 0|0)} has three elements, each conditional event
(a|b) has one of three possible truth values, (0|1) (false, or 0), (I1|I) (true, or 1), and
(010) (undecided, or u). The truth value t(alb) of (a|b) is thus called true if
#(ab) = 1, false if #a’b) = 1, and undecided if 1b") = 1.

We pause here to discuss these three possible truth values, their justification,
motivation, and history. The connection of conditional events and three-valued logic, at
an informal level, appeared in 7 -<Finetti (1964). Following his discussion on conditional
prevision and probability, in which the concept of conditional events was mentioned
(DeFinetti, 1974, vol I, p.134), he brought out the connection as follows. In the
conditional event (a|b), there are three cases to consider, ab, ab’, and b’, corresponding
to "thesis", "anti-thesis”, and "anti-hypothesis", respectively. The event a enters the
picture only throough its intersection with b. Thus (a]b) can be written in its "reduced”
form (ab|b). For DeFinetti, (@|b) is a formal object with no strict mathematical
meaning. He stated that "one might consider (a|b) as a tri-event with values (I|I) = 1,
(0]1) = 0, and (0]|0) = §, where I = true, 0 = false, and ¢ = void, according as it leads to
a "win", or a "loss", or a "calling off" of a possible conditional bet."

A similar idea appeared in Schay (1968). Generalizing indicator functions of
ordinary events, Schay defined conditional events (a|b) as functions, defined on a
sample space £, and taking three possible values {0, I, u}, with u denoting
"undefined”. This approach is similar to the one taken in fuzzy set theory (Zadeh, 1965).
The truth space {0, I, u} 1is standard in three-valued logic. (See Rescher, 1969.)
However, in the calculations to be presented in this chapter, DeFinetti's notation will be
used, and we will justify the meaning giver to the symbols (I|I), (0]1), and (0]0). (See
also, Boole, 1854, pp. 89-97, and Hailperin, 1876, pp. 123-137.) '

In classical two-valued logic, the truth valuez of a Boolean expression such as
b - g, or equivalently b’ V g, are determined from those of the variables @ and b. The
truth space {0, 1} is a Boolean ring which can be viewed as being contained in every
Boolean ring R, so that the determination of the possible truth values of a Boolean
expression is equivalent to that determination for the case R = {0, I}). That is, the
determination of the possible truth values can be made by substituting only the values 0
and I's into the expression. Consider now a conditional event (a|b). Itis not a Boolean

@
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expression, but one can formally apply this evaluation process to get the possible "truth
values” of (alb). This is what DeFinetti did. Doing this for (a|b) yields the three
possiblilities (1|I), (0]I), and (0,0) = (I|0). Using our modeling of conditional events
as cosets of principal ideals,

d|D=1+{0,1}0=1+ {0} = {1},

O|=0+1{0,1}0=0+ {0} = {0}, and

©O=0+{0,1}=0+1{0,1} ={0, 1}.

The first two we identify with "true” and "false”, respectively, but there is a third possible
"truth value” (0]@) = {0,1}, which can be interpreted as "undecided" since we cannot
reasonably choose one of the values “true” or "false” for (2|b) when both @ and b are
0.

Now back to our more mathematical truth evaluations z:R|R - V|V. In the

diagram

RIR) flg LRIR

m t

vivp LYV ,
lI‘flg

if flg is a conditional Boolean polynomial and ¢ is a truth evaluation on R|R, the map

Qfl g induced by that polynomial on (V|V)® is called the truth function or truth table of

flg. It of course depends on the truth evaluation f. More generally, any function
¥ : (V|V) - V|V is called a truth function or truth table. Here is our main theorem for
the conditional case. It follows immediately from the previous Proposition 2 and
Lemma 6.

Theorem 2. Let R be a Boolean algebra, let t be a truth evaluation on R|R, and let
flg : R|R}® - R|R, be a conditional Boolean function. Then there is exactly one trutk
function

¥, VIV V|V

such that

‘Pﬁgot“ = ro(f| g),




~ J l

nam——
. N

)
e

Veroaront

(w—--;l

I
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namely ‘I’ﬂ ¢ = flg. Conversely, given a truth function ¥, that is, any mapping

W (VIVR V]V,

there is exactly one conditional Boolean function f|g: (R|R™ - R|R such that

-

Y o = to(f| g),

namely that given by the conditional Boolean polynomial f|g inducing ¥. In particular,
there is a one-to-one correspondence between truth functions V|V -+ V|V and
conditional Boolean functions (R|Ry* - R|R. o

In the theorem, given f|g, how can one actually construct ‘I‘ﬂ g? Given ¥ how

can one actually construct f|g? If flg is given, it is almost always given in the form of
a conditional Boolean polynomial, in which case simply take ‘Pfl g flg. In any case,

the action of the function f|g on V|V is given, and that action determines f|g. So
from a function (V|V)® - V|V, we need to construct the conditional Boolean polynomial
inducing it. Thus we need to construct two Boolean polynomials inducing two given
Boolean functions V2" 5 V. We have seen earlier how to do this explicitly. Now,
conversely, this is the same problem as constructing from ¥ : (V|V)? 2 V|V the requisite
flg- So carrying out these constructions is just a problem in constructing Boolean
polynomials inducing given functions V2 - V. We will have occasion to carry out some
of these constructions in Section 3.5 for the cases n=1 and n=2.

In case n = 2, each conditional Boolean polynomial gives a binary operation on
R|R, and in particular on V|V, and we have a one-to-one correspondence between binary
operations (given by conditional Boolean polynomials) on R|R and (binary) truth
functions on V|V. The case n = 1, of course, gives a unary operation on R|R, or just a
mapping from R|R into itself, and there is a one-to-one correspondence between unary
operations on R|R (given by conditional Boolean polynomials) and unary truth functions
on V|V. The space V|V = {(0|I), (I|]), (0]0)} is called the truth .pace. We sometimes
label its elements 0, 1, and u for (0|I), (I|1), and (0]0), respectively, thinking of 0 as
false, 1 as true, and u as undecided. Various authors have defined logical ccnnectives, or
operators V, A, and * on R|R, and there are several well known sets of truth tables for the
truth space V|V. Given logical operators Y, A, and ” on R|R, there are corresponding truth
tables for them. These truth tables may or may not be reasonable ones from a logical
point of view. It is typical that a three-valued logic is specified by giving five truth tables,
one for each of the connectives V, A, ’, -, and +— . In any case, truth tables for them give
rise to algebraic operations on R|R, and with these operations, R|R may or not be an
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interesti. z or tractable algebraic system. This one-to-one correspondence between truth
tables (for V|V) and operations on R|R is of interest, with this latter structure providing a
syntactic home for a2 given three-valued logic. We will look at several such
correspondences in Section 3.5.

In discussing conditional Boolean polynomials, we have stuck to those f|g in
reduced form. Thatis, f and g are Boolean polynomials in normal disjunctive form
with no terms of the form

YI,Y2,,,,Xi,o-.,Yn,Yn+,...,Xi.l_n"c0~Y2n,

and every elementary term of f is one of g. Usually, a Boolean polynomial can be
written in much more compact form than its normal disjunctive form. For this reason, and
for computational purposes, we indicate how to associate a conditional Boolean
polynomial with f|g for any Boolean polynomials f and g. To do tais, just put f and
g in their disjunctive normal forms, discard from each their elementary terms of the form
displayed above, and from f those elementary terms not in g This last step is the same
as "intersecting” f with g. In fact, one could intersect f and g first, and then put fg
and g in their normal disjunctive forms, discarding those terms of the form displayed
above. This gives a pair f|g in reduced form, and starting from any pair, it should be
clear that it is associated with exactly one f|g in reduced form. Further, any pair f|g
induces a function

flg: RIRy - R|R

just as in the case of reduced forms, and two f|g's induce the same function if and only if
they have the same reduced form. We will call two f|g's equivalent if they have the
same reduced form, or what is the same thing, if they induce the same mapping just
indicated.

The procedure outlined above is useful in verifying that two pairs flg are
equivalent. We illustrate with an example. Let n = 2, and consider the two conditional
polynomials

fle=&1" VX VX3'Xs") | (X1 X3 v XaXys VX3X4 VX3'X4")
and

hlk = (X1 X2 VX1 X3 VXoX3' VX3,X4')I(X1’X3 VX Xs vV X,X3' VX3'Xs").

Now it is an easy calculation to get
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=X VX Xy VX3'Xy'

and
Bk =X1X2Xs VX1’ X3 VXoX3" VX3'X,’".
Stll, it is not clear at all that
folg = G17X3 VXoXa VX3'X4') | &1 X3 VXX VX3X4 VX3'X,")
and

Rk = (1 XXa VX X3 VX2X3" VX3'Xy") | (X1'X3 VX1 X4 ¥V X0X3" VX3'X4')
are equivalent. The disjunctive normal form of fg =X;"X3 VXoXs VX3'Xy” is
X1 XoXaXy VX X" XaXo V X1 " XoXaXa" VX1 X5 X3Xs'
VX0 XoXaXy VX " XoX3X VX1 XoX3 ' Xa VX " X0X3 Xy
VXX Xy VX KoXs X ¥ XXy Xa X" VX, Xy Xa K

which, after discarding duplicate terms and those of the forms X;WX3’Y and WX,YX,’,
becomes

X XoXaXa VX X0 XXy V X " X0 X3Xs'
VX1 XoX3Xs ¥ Xy XoX5 Xy ¥ X1 X0 X3 X"
Similarly, the normal disjunctive form of hk =X, X,Xs VX' X3 VXoX3" VX3X,” is
X1XoX3Xs VX1 X0X3 Xy
VX XoXa3Xa VX "X XX VX XXXy VX1 X0 XXy
VX1 XoX3 X4 V Xy XoX5 Xs VX1 XoX3 Xa' VX1 XoX5' Xy
VX XoX3 Xy VX XX3 Xy VXX X3 Xy VX "X X5° X, .
Again, discarding duplicate terms and those of the forms X;WX5’Y and WX,YX,” yields
X1XoX3Xs VX1 XoXaXs VX X5 X3X,4
VX "Xy XaXa" VX X X3 Xg VX "Xy X3 Xy

which is the same form as that of fg. Similarly, g and k have the same such forms, so
that flg and h|k are cquivalent. They represent the same conditional Boolean
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polynomials, and induce the same conditional Boolean functions.

In summary, the situation is this. There is a one-to-one comrespondence between
(conditional) logical operations on R{R and truth functions on the truth space {0, I, u}.
Note however that, unlike the case of R, tiere is a variety of three-valued logics. See, for
example, Rescher (1969) for background. Also, note the difference with the Boolean case:
since both R and (0,1} are Boolean rings, truth evaluations are specified as
bomomorphisms; the situation in three-valued logics is somewhat different. Indeed, as far
as three-valued logics are concerned, all logicians insist on the choice of some system of
"truth tables” for basic connectives between implicative propositdons without syntax
considerations. This is not surprising since the concrete space R|R of implicative
propositions, as a mathematical entity, was never considered at the level of Boolean rings
for unconditional propositions. Now, since R|R is shown to be the space of all cosets of
principal ideals of R, it is possible to investigate its algebreic structures induced by
semantic considerations.

In the case of R|R which has no a priori algebraic structure, we have only at our
disposal truth evaluations ¢:R|R - {0, 1, u} defined previously. The objective is to
establish an analogous commutative diagram for the conditional case. This type of
diagram will provide algebraic structures for R|R from given semantics and vice versa.
If {0,1} is the truth space in classical two-valued logic, then formally ({0, 1}|({0, I})
is the truth space for elements of the conditional space R|R. From the above
identification, we see that three-valued logic is natural for conditional events. This is in
line with earlier considerations of DeFinetti (1964) and Schay (1968). It is interesting to
note that the symbols (0]1), (I]|1), (0]|0) appeared also in Boole's Laws of Thoughts
(Boole, 1854), apparently in his attempt to provide a disjunctive normal form for ratios of
propositions. See also Hailperin (1976).

Another constructive proof of Theorem 2 will now be given. First, in view of
Stone’s Representation Theorem, we regard the Boolean ring R as a field of subsets of
some set €. As such, truth evaluations can be expressed in terms of indicator functions.
Recall that the generalized indicator function of (a|b), for a, b € R, is defined as:

Palb) : Q-+ {0,u,l)

1 if weab
(p(alb)(d)):{o if mea’b

uif web’ .

Assuming a < b, (a|b) parttions Q as a,a’b, b’, so that if we let
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polynomials, and induce the same conditional Boolean functions.

In summary, the situation is this. There is a one-to-one correspondence between
(conditional) logical operations on R|R and truth functions on the truth space {0, I, u}.
Note however that, unlike the case of R, there is a variety of three-valued logics. See, for
example, Rescher (1969) for background. Also, note the difference with the Boolean case:
since both R and {0,1} are Boolean rings, truth evaluations are specified as
homomorphisms; the situation in three-valued logics is somewhat different. Indeed, as far
as three-valued logics are concerned, all logicians insist on the choice of some system of
"truth tables” for basic connectives between implicative propositions without syntax
considerations. This is not surprising since the concrete space R|R of implicative
propositions, as a mathematical entity, was never considered at the level of Boolean rings
for unconditional propositions. Now, since R|R is shown to be the space of all cosets of
principal ideals of R, it is possible to investigate its algebreic structures induced by
semantic considerations.

In the case of R|R which has no a priori algebraic structure, we have only at our
disposal tuth evaluations t:R|R- {0, 1, u} defined previously. The objective is to
establish an analogous commutative diagram for the conditional case. This type of
diagram will provide algebraic structures for R|R from given semantics 2nd vice versa.
If {0,1} is the truth space in classical two-valued logic, then formally ({0, 1}}{0, I})
is the wuth space for elements of the conditional space R|R. From the above
identification, we see that three-valued logic is natural for conditional events. This is in
line with earlier considerations of DeFinetti (1364) and Schay (1968). It is interesting to
note that the symbols (0|I), (1]1), (0]|0) appeared also in Boole's Laws of Thoughts
(Boole, 1854), apparently in his attempt to provide a disjunctive normal form for ratios of
propositions. See also Hailperin (1976).

Another constructive proof of Theorem 2 will mow be given. First, in view of
Stone's Representation Theorem, we regard the Boolean ring R as a field of subsets of
some set . As such, truth evaluations can be expressed in terms of indicator functions.
Recall that the generalized indicator function of (a|b), for a, b € R, is defined as:

Malb) : Q- {0, u, 1}

1 if weab
pa|b)(w) = [0 if wmea’d

uif web’ .

Assuming a < b, (a|b) partitions Q2 as a,a’b, b, so that if we let
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i=1,2, .., n, there are only three pairs (0, 1), (0, 0), (I, I) foreach (Si, 'yl.), thus, letting
1if (8,%)=(1,1)
ji = 0 if (ait 7,-) = (0) 1)
u if (5,7)=(0,0),

and, for
i: (i])jZl soey jn);
wz(g |B) = wjl(a 7 |b 1)...»4:’.n(an|bn) .
we have
odg, b) = v 6y, . O, ¥p» - T IW@|D) = V  wiald)
= elown® WA el jel(o) L
where

J@c{0,u I},
J(@) = {j : Aoy, ..., Gn, Vpp e W) = 1}.

Notethat j=( I j2' - jn) with ji correspends to (61" ‘yi). Define
lp}.: {0,u,1}»-{0,u, 1} by

1if jeJ(a)
Yp =10 if jeJS°(a)nJB)
uif jeJ°(B)

where J¢ (¢) denotes the set-complement of J(&) in {0, u, I} and similar notation

applies to J(f).
Note that fia|b) might have another representation form, say (A(g, b)|B(a, b)), but

then (g, b) n B(a, b) = A(g, b) n (g, b), implying that
J(0) n J(B) = J(A) n J(P),

so that uff is well-defined.
For Yr defined above, (*) holds. Indeed, for (a|b) e (R|R)" arbitrary but fixed,
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@fla]p))(w) = 1 if and only if ¢{cdg, b)|B(g, b))(@) =1 if and only if ®e afg, b)
(assuming o< ) if and only if

we V w.(alb)

JeJ( a)
if and only if -
e wialb)
for some
i€ J(0)
if and only if

WEe wji(ailbi), Vi=1,2,..,n

(where j = (j, ...,j,)) if and only if
oa;|b)(@) = j; Vi=1,2,..,n
if and only if
I=y{) = y(@la;|b )@, ... ¥a, b )@) =y, (@|b)(w)).

The argument is similar for ¢{f{a|b)}(@) =0 or wu

Conversely, if y:{0,u, 1}*-{0,u, I} is given, then there exists a unique
Boolean-like map (a|B) : (R|R)® -+ R|R such that (*) holds. Indeed, it suffices to take

alg, b)= Vv w(alb)
jey’ (I)

Bla, b) = wia|b).
jey’ (z)uw Loy L

Several remarks are in order.

(i) Viewing (a|b) as a mathematical entity with the three possible values 0, u, or 1,
the function ¥¢ uniquely associated with a map f: (R|R)® - R|R is precisely the "truth
tzble” of f. The funcion ¥y is completely determined once f is specified. The
converse is also true: a truth table W will uniquely determine a "syntactic” (mathematical)

modeling of a connective on  R|R. Moreover, (*) of Theorem 2 expresses the
truth-functional property of logic, namely truth values of an n-ary connective on R|R
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are determined from those of the components.

(i) In the literature of three-valued logic (for example, Rescher, 1969), one usually
considers a collection of sentences S in which each sentence s can be either true, false,
or "undetermined" (Lukasiewicz, Bochvar, Kleene). The algebraic sti. sture of S is rarely
specified. Instead, semantically, five truth tables, one each for. A, v, ’, »,and +— are
given. Our remarks above show that, given such a system- of "truth tables", one can
explicitly write down their "syntactic” counter-parts, and conversely.

It is interesting to speculate about the algebraic analog of a Boolean ring as a basic
space for Lukasiewicz's logic. That is, can one give a mathematical representation of a
sentence s in S in such a way that as an algebraic structure, S will be equipped with the
basic connectives whose truth tables are given in advance? As we shall see in Section 3.5,
one such mathematical representation for § is our conditional extension R|R where our
logical operations introduced in Section 2.2 correspond precisely to Lukasiewicz's truth
tables.

(1) As far as we are concerned here, the easy part of Theorem 2 will serve as a
way to discuss the "reasunability” of our proposed system of logical operations for
conditional events. This will be carried out in two steps. First, from a given system of
operations on R|R, one proceeds to identify their associated truth tables using normal
disjunctive forms of Boolean functions and the explicit construction of ‘I’f given in the
proof of Theorem 1. Next, once a system of truth tables is obtained, one looks at the
names of the connectives involved (say, f = "and") and examines their truth tables. Since
a truth table of a given connective (in natural language) should reflect the common sense
meaning of that connective, any "unrcasonable” truth table found will lead to the
conclusion that its corresponding proposed operation on R|R is "unreasonable”. This
program will be carried out in Section 3.5 with the systems of logical operations on R|R
proposed by Adams, Calabresc, Schay, and by us.

The other part of Theorem 2, namely that each truth table in three-valued logic,
corresponds uniquely to an operator on R|R, is useful for investigating new algebraic
structure of R|R.

(iv) The above three-valued logic viewpoint can be used to formulate the concept of
realizations of conditional events. Let R be a o-field of subsets of a sample space Q. The
generalized indicator function @ of each (a|b) is defined as ¢{a|b)(w) = 1 on ab, uon b’,
and O on a’b. As in the case of ordinary events, where a € R is said to be "realized" if the
"outcome” we a, that is, if p(a|l)(@) = I, conditional events can possess a similar
concept, viewed from a three-valued logic standpoint. Recall that (a|b) = [ab,b"Va]. If @
€ ab, then w ¢ x for all x e (a]b), so that (¢|b) is "fully" realized; if w € a’b, then w¢ x
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for any x € (a|b), since a’bx = 0, thus (a|b) is realized at "level" 0; if w € b’, then for
each x € (a|b), x may or may not occur, depending on whether @ e xb” or not. If it is,
then we can interpret the realization at some level, for example at level P(a|b) for sore
probability measure P on R. ‘This can be justified by the consideration of a random
variabie X defined on Q having values 0 on a’b, I on ab, and P(a|b) on b’, and noting
that EQX) = P(a|b). .

(v) The viewpoint of three valued logic taken here should not be confused with the
three-valued logic associated with "conditional forms” of McCarthy (1967) which
motivated algebraic investigations referred to in the literature as "conditional logic”
(Guzman and Squier, 1990). "Conditional logic” in the literature sometimes refers to the
non-commutative (regular) extension of Boolean logic to three truth values, the third
denoted u and standing for "undefined" or "non-terminating evaluation”.  The
non-commutativity refers to the logic connectives V and A in the extended logic. This
phenomenon appears in McCarthy (1967) in which it was shown that in order to define
computable partial functions, it is necessary to allow undefined expressions in the
recursive formulae. From a logical viewpoint, this amounts to considering a third truth
value "u" for these undefined expressions.

Consider, for example, defining recursively the function fin) = n! on the domain of
non-negative integers. A verbal rule is "if n = 0, then assign the value I, else assign the
value n(n - I){" The statement "If ..., then ..., else If ... then ..." is called a "conditional
expression”. In symbols, a conditional expression is denoted

(a]-»b_,,az-»bz,...,an—’bn)=CE(aI,...,an;b],...,bn),

which means "if a 1 then b 7 else if a, then b2’ ..., else if a, then bn." Its value is
defined as CE(a], cees 8 b]’ e ey bn) = bj where j is the first i such that a; is true.
The evaluation of CE(a], cees By bI’ RN bn) proceeds from left to right, and stops
when the first true a; is found. Of course, the a; and bi are propositions, that is, can only
be tue (T) or false(F). That is, we are in classical two-valued logic, where the
propositions are elements of a Boolean ring R with the usual connectives. If T and F also
stand for "always wue" and "always false", respectively, then the usual Boolean
connectives can be expressed in terms of some simple conditional expressions. Indeed,
using uth tables in two-valued logic, it is readily checked that

ahb= (@-b,T-F),
avVb=@-T, T-b),
a’' =@-F,T-T),

a’Vb=(@-bT-T).

o
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Now consider the partial function f{n) = n! on the set of integers. The recursive
definition of f{n) in terms of conditional expressions is

n=nm=0-1,n#0-nn-1).
Thus
20=2=0-1,2#0-22-HY) =

=2 =1-1,120-1(1-D)) =
2()0=0-1,0%0-00- D) = 20)I) = 2.

Note that (0 - I)! is undefined. To carry -out the computation above, it is necessary to
allow the conditional expression to be defined even if the term beyond the one that gives
the value is undefined. Thus in a general CE(a I e e By b e bn)’ one should allow
the situation where a; or b, are undefined, which means that the range of truth values of
each "proposition" is extended to {T, u, F). In this logic, the CE are defined as follows:

CE(aI,...,an;b],...,bn)=bj

if there is a bj which is "defined”, and a; is false for i < j, and if undefined otherwise.
Thus CE(a Jree e Byl b e bn) is undefined, that is, has truth value "u", when either

(1) all the a; are false, or
(ii) a; is false for i < j, aj is true, and bj is undefined, or

(iii) there is an undefined a; before atrue g j'

From this, it becomes clear that the extended connectives V and A are not commutative.
Indeed, romaAb=(a-~+b, T~ F),if ais F and b is u, then the value of a A b is F,
which has truth value F. while b A @ has value undefined (by (iii) above) with truth value
u. Similarly, ifg isTand bisu, thenaVbisT,butbVais u.

This non-commutative three-valued logic in mechanical computation theory, bearing
the name of "conditional logic" because of the role played by conditional forms in
recursive computations, seezas not to be in the mainstream of multi-valued logic.

3.5 Comparison of various systems of logical operators.

In this section, we are going to examine three systems (’, A, V) of basic connectives
on R|R. The truth tables of these systems will be constructed, and the relative merits of
these systems will be discussed. These systems have been chosen because they have been
studied to some extent as algebraic systems. Indeed, the last one (Goodman and
Nguyen's) is elaborated on at length in Chapter 4. Some connectives on R|R arising from
the truth tables of several three-valued logics will be constructed. These particular
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three-valued logics are chosen because of their particular interest and importance in the
field. Our prinicipal tool is Theorem 2 of Section 3.4. and the comments following it with
regard to making the necessary constructions.

We begin with the definitions and a bit of discussion of the three systems (”, A, V) of
connectives to be examined. The recent paper by Dubois and Prade (1990) is relevant.
here. All the systems have the same negation * on R|R, given by (a]b)’ = (a’b|b).
This is in agreement with the negation operator in the Boolean ﬁf)g RIRb’.

In his 1968 paper, Schay investigated the two systems which follow.

Schay's First System
(a|b) Alc|d) = (B’ va)d' Vo)|bVa),
(a|b) V (c|d) = (ab V cd|bV d).

In his original formulation of this system Schay (1968, p. 338), wrote the operations
slightly differently. Conjunction was given as

(a|b) A (c|d) = ((abcd V abd’ ¥ cdb’}|b V d).
But
b’ va)d ve)=b'd Vb'cVvad Vac,
and
®’d"vbcvad' Vac)A(bVd) =

b’cdVvad’bVachbVacd=
abed vV abd’ v cdb’.
Disjunction was given by

(a|b) V(c|d) = ((aVc)bdVabd’ Vcdb’|bV d),
and

@V cobdVabd Vedb')A(bVd)=
abd V bcd V abd’ ¥ cdb’ = ab V cd.

Thus the two formulations are the same. Afier Schay, Adams (1975) and Calabrese
(1987) proposed this same system.

Schay's Second System
(a]b) A (c|d) = (ac|ba),
(a]b) ¥ (c|d) = (a V c|bd).
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In their work on the foundation of the Bayesian approach to statisticss, Bruno and Gilio
(1985) considered connectives on conditional events corresponding to disjunction of
Schay's first system and to conjunction: of Schay's second system.

Goodman and Nguyen's System
(a|d) A(c|d) = (ac|(a’b ¥ c’d V bd)),
(@|b) ¥ (c|d) = (@Vc|(abVcdV bd)).

This system arose from Goodman and Nguyen's efforts (1988) to extend operations on R
(events) to those on R|R (conditional events) which would be consistent with conditional
probability, and resulted from realizing the elements of R|R as cosets of principal ideals
of R. These operations are set forth in Section 3.2.

Below is a table of these three systems of connectives in terms of conditional
Boolean polynomials. Following this table is a table of several weli-known three-valued
logical systems. We make a slight change of notation. For n = 2, the Boolean
polynomials involved are functions of four variables, and it is convenient to denote those
variables A, C, B, and D, rather than as Xj, X,, X3, and X4. We remind the reader that for
n = 2, the evaluation of a conditional Boolean polynomial is given by

fleWalb), (c|d)) = (flab, cd, b, d)|g(ab, cd, b, d)).

Thus if
flg=(AD’ vCB’ v AC|B v D)
then
flglalb), (cjd)) = ((abd’ v cdb’ V abcd)|b V d).
System A v
Schay's first AD"VCB’VAC|BYD AVC|BYD
Schay's second AC|BD AvVC|BD
Goodman-Nguyen AC|A’'BVC'DVBD AVC|AVCVBD

The conditional Boolean polynomials above for V and A just reflect the formulas
for (a|b) v (c|d) and (a|b) A (c]d). The polynomials are, of course, not in disjunctive
nomnal form, but are in much simpler forms. We have not written the relevant
polynomials for “ since they are all A’B|B, using A and B for the two variables.

In truth tables below, 0, 1, and u are used for (0]1), (1]1), and (0|0), respectively,
and x and y for (a|b) and (c|d), respectively.
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Lukasiewic?'s three-valued logic
XAy xVy
xly HIxVo 1 wllxV|o 1 u
011 0 0 0 00 I u
110 110 1 u 111 1 1
ulu u|{ 0 u u uiu l u
X 4y X —y
N|o 1 ullxV|o 1 u
0]0 0 0O ot 1 0 u
Iluau 1 1 110 1 u
ulu I 1 ulu u 1

Sobocinski’s three-valued logic

XAy xVy
xlx IVl o 1 wullxVio I u
0 I 00 0 0 0 1 0
1§10 1101 1 111 1 1
ulu ul|l0 I u ul|l 0 I u
X 4y X ey
N o 1 ullxV|o 1 u
o117 I 1 010 0 0
110 01 110 01
ul{ 0 1 u ul0 0 u

We will now compute the truth tables for Schay's first system. For all three systems,
we have for

O’ =©’1|11) =],
|’ = 1{D = ©]1),

©0]0)" = (0°0]0) = (0]0).

The disjunction A V C|B V D for that system is simple enough so that its table can be
written down easily. To get the table for A, we make the following caiculations, which is
just an exercise in evaluating the conditional Boolean polynomial

flg =AD’ VCB’ v AC|B V D.
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- O VOI)=©OVOovOo[IvI)=(|D),
! OID VU =©VOoVOoJU vI)=(@©|D,
©|1) v ©]0) =0 VOVO|1V0)=(0]),
dIDHVOID=©VOVOojIvVI)=(0|D),
dIhva|D=©vovI|Iv)={|D,
N d|DVE|O=EVOVOlIVO0)=(|D,
: . ©[|0)VO]I)=©VvO0Vv0jovI)=(0|D,
©lO)vU|D=@VIVOlovVI)=(]|),
©0]0) v (0]0) = v 0 v 0|0 v 0) = (0]0).

Thus we get the following truth tables for Schay's first system.

XAy xVy
X x’ x\y Gl 11 00 x\y ol 11 010
011 111 ol ol ol ol 0l or 11 ol
i Il1 } 011 1i1 g1 1I II nr |y nr nr il
E 0io | 010 [l o1 11 0o 0l0 ol 11 0o

PYLIYY

These tables are recognized as those of Sobocinski’s three-valued logic.

Next we construct the truth tables for Schay’s second system. Since the operations
are particularly simple, namely (a|b) A (c|d) = (ac|bd) and (a|b) Y (c|d) = (a V c|bd),
these tables can be written down easily. Here are the tables.

LY T T TPy

XA Yy vy
!; x | x Ay | o7 11 oo Ay | o1 n1 oo
£ ot 171 O [0 G 00 | ~{ O [ OI Il 00
11 | o nr | o1 niooo nr |\ nronr oo
| 010 | 010 00 | oo oo 00 o0 | o1 0o 00
[

Vreaiue

et
-

The :ables are recongized as those of Bochvar’s ihree valued logic.

| -~

Now to the Goodman-Nguyen system. For the connective V for this system, we
make the following calculations using the formula for v for that system.

PO
. -

OIDVOD=0VO0]0VOV(AlL)=(0|D,
OIDVUID=@VIOVIV{ AL, =]D,
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O} ¥0j0=@©VO0l0VOV U AO)=(0]0),
AIDVOID=UVO|IVOV( AID=(|D,
AIDYAID=UVI|IVIV{I AD)={]D,
AIDVE|0O=UVO|IVOV{U AG)=(|D,
©]0) Y @D =@ V0]0vOV(©AD)=0]0),
OO VUID=OVI|IOVIVOAD) =D,
©0]0) v 0]0)= (@ v 0]0 V0 V (0 A 0)) = (0]0).

Making the analagous calculations for A, and putting the results in the usual form for truth
tables yields

XA Y xVy
X x’ x\y 01 IiI 00 x\y 01 11 010
ol 11 ol ol ol ol ol ol I 00
Il1 | 011 i I 11 0o I mr 1m i
010 | 014 0l0 01 00 00 010 00 11 00

These are recognized as truth tables for ', A, and V, respectively, for Lukasiewicz’'s and
Kleene's three valued logics. These three-valued logic are well established, and serve as a
strong motivation and justification for the Goodman-Nguyen operations °, A, and V on
R|R. Further, the tables for V and A are the truth tabies for A and V for Heyting's
three-valued logic. Thus, once R|R is at hand, there ate strong reasons from a
three-valued logical perspective to define the operations V, A, and * on R|R as done by
Goodman and Nguyen and for making a thorough study of the resulting algebraic system.

To illustrate the method of constructing a conditional Boolean operator of RIR from
a truth table, we construct that operator for Lukasiewicz's + and for Sobocinski's
disjunction. Following are those truth tables in terms of the elements of VIV, from which
it is easy to make the necessary calculations.

X4y xvVy
x\y o1 n1 oo x\y o1 nr oo
oil nr o nlo Nl ol ol nhi od
Il o1 11 0o I I nr
010 00 n1 11 010 o1 11 00

The conditional Boolean polynomial fig for - is determined by the following values for
f and g, which are read off from the tzble for ~.
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£0,0,1,1)=1, 80,0,1,1)=1,

f0,1,1,)=1, 80,1,1,D=1, .)
£0,6,1,0)=1, £0,0,1,0)=1,

fi,0,1,1)=0, 8i,0,1,1)=1,

fa,1,1,nh=1, 8i1,1,1,n)=1,

f1,0,1,0)=0, 8,0,1,1)=0,

£0,0,0,)=0, £0,0,0,1)=0,

f0,1,0,1)=1, £80,1,0,)=1,

0,0,0,0)=1, 80,0,0,0)= 1.

Thus f and g arc the Boolean polynomials
f=A’C’'BDVA’CBD YA’C’BD’ YACBD VA’CB’DVA’C'B'D’

=ACVA’BVB’CYB’D’.

and

g=A’C’BDVA’CBD Y A’C’BD’ VAC’BD YACBD VA’CB’D VA’C’B’D’ .)
=A’C’'BDVA’CBVA’BD" VAC'DYACVB’CVB’D’
=A’B(C'DVCVD’)VA(C’'DVC)VB’'CVB'D’
=A’‘BVADVB’CVYB'D’
=CVA’BVADVB'D’.

Thus Lukasiewicz's -+ is given by the formula

@b) +(dd) =(acva’bvb'cvb’dla’bVvadvb'cVYb'd)

Similarly, the f and g for Sobocinski’s disjunction have the values

£0,8,1,1)=0, 20,0, 1,D=1,
fo,1,1,H=1, g0,1,1, D=1,
£0,0,1,0)=0, 20,0,1,0)=1, .)

f1,0,1, ) =1, 8(1,0,1,1)=1,
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A, 1,L,1)=1, ¢1,,1,1)=1,
f1,0,1,0)=1, g1,0,1,1)=1,
f0,0,0,1)=0, 80,0,6,1)=1,
f0,1,0,1)=1, 80,1,0,)=1,
£0,0,0,0)=0, £00,0,0,0)=0.

Thus f and g an: the pclynomials
f=A’"BCDVABC’'DVYABCD VABC'D’ VA’B’CD
=A’BCVAC'DYABVAD’ VYB'C
=A(C'DYBVYD’)YC(A’BVYB’)

=AVC
and
g=(A"B°’C’'D’Y =AVBYCVD=CVYD.

Thus the formula for Sobocinski'’s disjuactioa is
@b) v (dd)=(avdbva),
which, of course, we already knew.
We now illustrate the use of the second proof of Theorem 2 in consiructing truth
tzbles for various three-valued logical operators.
(i) Negation operators. For the negation operator given by
(a]b)” =(a’|b) =(a’b]b),
the pariition induced by (a|b) is
woalb) = a’b, wi(a|b) = ab, wifalb) = b".

Thus

(a|d)” = (ada, D)|Bla, b))

where

oda,b)y=a’b
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Ka,by=b=abya’b.

Thus
) =10}, 7@ =10, 1),
and hence
3 for ie J@nJ(@=1{0}, ¥ .0)=1,
: for ie JS(B)={u}, ¥, @) =u,and
: for ie JBnI@={1}L, ¥ (D=0
't This is Lukasiewicz truth table for negation (see Section 3.4).

= (i) Conjunction operators. The-conjunction operator A of Schay’s first system is
{ given by

z @|p)A(c]d)=((b" Ya)d’' YO)jpVd) =
@ va)@ YcXbVYA)|(bVYd) = (abd” Vcdb’ ¥ abed|b ¥ d). ‘

Thus o, or a for shoxt, is

wi(a|bYwe(c|d) V wi(c|dwq(a]b) Y wi(a]b)wi(c|d),
so that
| X = (7,8, @ D), d, D} -

Next,

p=bvd=bd¥bd’'dvbd’

i = (abed) V (abc’d) Y (a’bed) V (a’bc’d) Y (abd’) Y (b°cd) ¥ (a’bd’) ¥ (B'c’d) -
Thus

L JB=1(,1),0,0).01),0.0), U v, @), 0wy, 0)

and

Ha) nJ(B)= ({1, 1), (u, 1), (1, )}

f- J(®) = (s, v)) ‘ ;

J(B) 0 J(e) = ({1, 0), (0, 1), (0. 0), (0, 1), (, 0)} -
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Therefore
1 for G, )) € {(1, H(w, 1), (1, w)}
VG, )= u for (.))=(u, u)
0 for G, )) € {(Z,0)0,1),(0,0), O, u), , 0)} .

This is Sobocinski's truth table for conjunction.
For Schay's conjunction in his second system,

(a]b) A (cld) = (ac|bd),
and one obtains
1 for (i,j)=(1,1)
v, 6. ) = { u for (i, j) e {(0, w), (u, 0), (u,w), (, 1), (1, W)} .
0 for (i, j) e {(0, 0),(0,1),(1,0)}

This is Bochvar’ truth function for conjunction.
For the Goodman-Nguyen conjunction,
(@|b) A(c|d) = (ac|a’b V c’d V bd) = (abcd|a’b V ¢’d V bd),

whence @ = abcd and so
J(0) = {{, D}.
B=a’bvc'dvbd
=a’bVc’dV (bdac V bd(ac)”")
= (abcd) Ybda” Ya'b Vv c’dV bdc’
= (abcd) Vbda’ V(@’bd Vv a’bd’) V(c’dbVc'db’)V bdc’
= (abed) Vbda” Va'bd” V ¢’db v c’db’
= (abed) V (@’ b)c’d) V ((@"b)ed) V (a’bd’) V ((abc’d) V (@’be’d) v ¢’db’,

so that
J(B) = (U, 1), ©,0), ©, 1, ©, u), (I, 0), (4, 0)} .
Hence
J(@) nJ(B) = {1, D),
B = (), @, 1), (, w),

and
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J(B) 0 J5(@) = {0, 0), (0, 1), (0, w), 1, 0), (, 0)},

so that
1 for (i,j)=(1,1)
v, 6. 0) = {u for (i, j) € {(u, u), (u, 1), (I, w)}
0 for (i, j) € {(0, 0),(0,1),(0,u), (L, 0), (u, 0)}

which is Lukasiewicz truth table for conjunction (see 3.4).

(iii) Disjunction operators. Adams and Calabrese's disjunctions are identical to the

disjunction in Schay's first system, which is given by

(@|b) V(c|d) = (ab V cd|b V d).

We have
1 for (i,j) € {(0, 1),(u,1),(1,0), (1,u), (1, 1)}
v, )j) = {u for (i,j) = (u, u) ,
0 for (i,j) € {(0, 0),(0, u), (u, 0)}
which is Sobocinski's disjunction.

The disjunction in Schay's second system is

(a]b) v (c|d) = (@ Vc|bd),

and

1 for (i, j) e {(0, 1),(1,0),(1,1)}
v, Jj) = {u Jor (i, j) € {(0, u), (u,0), (w,w), (u, 1), I, w)},
0 for (i, j)=(0,0)
which is Bochvar's disjunction.
For the Goodman-Nguyen disjunction,

(@|b)V(c|d)y=(a Vv clab Vcd v bd)
=(ab V cd|abV cd Vv bd),

)
a=abVcd
= (abd’ Vv abdc V abdc”) V (cdb’ V cdba V cdba’)
= (abcd V abd’ V cdb’ V abc’d V cdba’).
Thus

Je)={, D, I, u),@x),J0),Q0, D},
and

»

®

.)

C )
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B=abvedvybd.
Note that
bd = (abcd) V a’bd V bc’d
= (abcd) V (@’bdc V a’bdc”) V a’be’d)
and thus J
JB) =Je) v {0, 0)} .
Hence

1 for (i,j) e {(1, 1), (1,u),(u 1), (1,0), (0, 1)}
wi, ) = 114 for (i,j) € {(u, 0), (u, u), (0, u)} ,
0 for (i,j) = (0, 0)

which is Lukasiewicz truth table for disjunction.

Each proposed system in three-valued logic has its own rationale. Since logical
operations on conditionals correspond to truth tables ‘n three-valued logics, the
comparison of different algebras of conditional events is delicate. However, based on
Rescher’s discussion (Rescher, 1969, pp. 131-133), we make some comparisons below. To
do that, we first complete the description of the three algebras, Schay's first and second
systtm, and the Goodman-Nguyen system, by writing down the syntax operations
corresponding to the remaining two truth tables, namely for implication ( - ) and for
equivalence (+ ). (Of course x ++y means (x+Y) A (y #x).) Thus we will have three
algebras of conditional events, corresponding respectively to the three three-valued logics
of Sobocinski, Bochvar, and Lukasiewicz. In the following tables, the implication and
equivalence are expressed in terms of ’, A, and V within each system. As usual, we
generally denote A by juxtaposition. Also, in R, the implication - is material
implication. Here are the tables.

Schay's First System

(a|b) = (c|d) ={a|B)’ V (c|d)
(@|b) — (c|d)=((a— c)bd|b v d)
Schay's Second System

(a]b) - (c|d) = (a - c|bd)
(a|b) — (c|d) = (a — c)| bd)
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Goodman and Nguyen's System

@|b) -+ (c|d) = ®’d’ D) V (@]b)’ V (c]d)
(a]b) — (c|d) = ((a]b) = (c|d) A ((c|d) -+ (a| b))

In Heyting's three-valued logic, A and V are the same as Lukasiesicz's, so in the
corresponding algebra, A and V are the same as those of Goodman-Nguyen. Heyting's
negation is different, and is defined by

@|b)’ = (a’b|1).

Goodman and Nguyens A and V make R|R into a lattice, and on that lattice, Heytins's
negation turns out to be a pseudo-complementation, making R|R into a Stone Algebra.
The details are in Chapte 4. The operations on R|R corresponding to Heyting's - and
— are '

@)+ (c|ld)=b"’d" va’'b Vv (c|d)
(a|b) — (c|d)= b’d’ V ((a—~c)bd|a’bVc'dV bd)

Now, examining the truth tables of the conjunction and disjunction operators in
Schay's first and second systems, we see that they all violate plausible conditions for
multi-valued logics. First, viewing u as lying between 0 and I, any conjunction A
should be such that x Ay is the "falest” of x and y. Likewise, any disjunction V
should yield the "truest” of x and y (Rescher, 1969, p. 133). Thus for Schay's first
system,

u Al and 1 Au shouldbe 0 oru, but not 1, and
OVu and uv 0 should be 1 or u, butnot 0.
Likewise, for Schay's second system,

uAO and 0 Au should be 0 but not u, and
uvVl and IV u should be I, butnot u.

Finally, one can simply require that each logical operator on R|R should satisfy a
list of reasonable properties. For example, let A denote a binary operator on R|R
representing "conjunction.” Then the following is such a list:

P ] @|) A(c|)=(aAc|I) (A extends conjunction of unconditional events),

P, (a|b) A (c|d) < G@|b), (c|d,

@

9
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P3 A is associative,

P 4 M is commutative,

Ps A is idempotent ((a|b) A (a|D)) = (a]b)),

Pg (@ld) A0) =0,

P, (a|b) A 1) = (a]b),

P8 (a|b) A (c|b) = (ac|b), .
P9 (a|b) A b = ab (modus ponens),

P, (a]bo) A (b]c) = (ab]c) (achaining property).

All of Schay, Adams, and Calabrese,s conjunction operators fail to satisfy P,.
Their corresponding disjunction operators fail to satisfy the dual property
(a|b) v (c|d)) 2 (a|d), (c|d).

In terms of truth tables, A satisfies Pz if and only if i A j) S min(, ), for
i,je {0,u,l1)}.

If A satisfies P I P2 and P, then the corresponding truth table must be one of
the following four.

A 0 u I Ay 0 u 1

0 0 0 0 0 0 0
u 0 0 0 u 0 0 u
1 0 0 1 1 0 u 1
A3 0 u 1 A 0 u 1
0 0 0 0 0 0 0 0
u 0 u 0 u 0 u u
1 0 0 1 1 0 u 1

The table for A4 is Lukasiewicz's truth table for conjunction, which corresponds to
the Goodman-Nguyen conjunction operator. Using the Theorem 2 of 3.4, we get the
vperations

(a|b) Ay (c|d) = abed,

(a|b) Ay (c|d) = (abed|abed Va’bV c'dVb'd’),
(a|b) Az (c|d)) = (abed|b V d),

(a|b) A (c|d) = (ac|a’b Vv c’dV bd) .

Now it is easily checked that
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A, does not satisfy P5, P, Pg and P;p; : ‘
Ay does not satisfy P, Pg;
A3 does not satisfy P,.

Only A4 satisfies all ten properties!

In summary, in his pioneering work on logical conditional operators, Schay (1968)
proposed, at the syntax level, two systems. As Dubois and Prade (1989, 1990) have

- pointed out, and as we proved in Sections 3.4 and 3.5, Schay's systems correspond
precisely to two well-known three-valued semantics, namely those of Sobocinski and
- Bochvar. The algebraic approach to logical operations on conditionals presented in

Section 3.2 leads to a syntactic system corresponding to Lukasiewicz's three-valued logic.
The comparisons above suggest that each choice of a logical system should be dictated by
the situation at hand. This is similar to the situation in fuzzy logic (see Chapter 7). In
particular, the choice between Lukasiewicz and Sobocinski's logics is a matter of debate as

ri far as appropriate semantics for conditionals is concerned. See Chapter 6 for more details.

g In this book we take the viewpoint of Lukasiewicz, and investigate the mathematics of

‘g conditionals corresponding to his three-valued logic.

83

'y 3.6 Connection with qualitative probability ‘

i "~ Qualitative (or comparative subjective, or objective propensity) probability is
B motivated by the dssire to make numerical probability measures coropatible with
g non-numerical probability comparisons. For a general exposition, see Fine (1973, Chapter
I). See also Fishburn (1983), Villegas (1967), Domotor (1969) and Suppes (1973) for
further background.
In general, qualitative probability is a kind of order relation < on a given Boolean
i ring R. For a, be R, the relation a < b is interpreted as "b is at least as probable as
g a." Then, for a < b, one seeks probability measures P on R such that P(ag) < P(b).
: More strongly, one attempts to determine a qualitative probability < and
; quantitative probability measures P on R such that a < b if and only if P(a) < P(b) for

5' all a, b € R. In this case, P is called a representative of <. In order to achieve this,
8 usually an axiom of comparability is assumed such as a<b or b<a forall a, be R.

In the following, we discuss Koopman's conditional qualitative probability system
(Koopman, 1940). Interestingly, Koopman basically avoids use of any axiom of
comparability -- at least initially. Koopman's axioms follow (Koopman, 1960, page 275).
They are axioms for a system such as our R|R. ‘ |
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VY Axiom of Verified Contingency
(a|b) < (c|c).
1 Axiom of Implication
If (c|c)< (a]b),then c<a.
R Axiom of Reflexivity.
(alb) < (alD) .
T Axiom of Transitivity
If (a]|b) < (c|d), and (c]d < (e]f), then (a|b) < (el
A Axiom of Antisymmetry
If (a|b) < (¢|d), then (c’|d) < (a’|D).
C Axiom of Composition
C, I (alb) < (c|d) and (e]ab) < (f|cd), then (ae|b) < (cfld).
C, If (alb) (fled) and (e]ab) < cld, then (ezib) < (/1.
D Axioms of Decomposition
Suppose that (ac|b) < (df|e). If either of (a|b) or (c|ab) is » either of (d|e)
or (f|de), then the remaining one of (a|b) and (c|ab) is < the remaining one of (d]e)
and (|de).
P Axioms of Alternative Presumption
If (a]bc) < (d|e) and (a|(bc)’) < (d]e), then: (aley < {2 2).
S Axioms of Subdivision
For any integer n, let the propositions a 12 Ggr = Gy b I bz, vy bn be such that

alaj=blbj=0 for N a=a1Va2V...Van¢0; b=b1Vb2V...\ibn¢0;
(alla)<(azla)<... <(an|a); (bllb)<(b2|b)-(...<(bn|b). Then (a1|a)<(bn|b).

Koopman derives many properties of his axioms. Our purpose here is to show that
the relation € on R|R that we introduced in Section 3.3 satisfies all but the first and last
of Koopman's axioms system.
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108 Logical operations on conditional events

Theorem. Let R be a Boolean algebra. Then S defined on R|R by (a|b) S (cld) if
and only if (a|b) = (a|b)(c|d), satisfies Xoopman’s axiomI, R, T, A,C, D, P, and S. It
does not satisfy his axioms 'V and S.

Proof. Throughout we will use our critz./oa that (a|b)<(c|d) if and only if
ab<cd and c’d<a’b. (Theorem 1, Sectionp 5.5}

Axiom V is clearly false. Just pick <. o ~3:hil ab>e

Axioms I and R follow almost trivially = our critesion above, and axiom T is
noted immediately after the definition of < in St:tion 3.3.

Axiom A is part of our criterion for (a5} <  ;d).

To verify the first part of C, let (a]b) S{:i.; znd (e!ab) < (flcd). Then

ab<scd,
c’dsa’b,
eab <fcd ,
and
fcedse’ab.
To get (ae|b) < (cf|d), we need
aeb< cfd
and
(¢hH'd s (ae)’b.

The first we have, and from f’cd < e’ab, we get
eva’' vb' sfve’'vd’,
and from c¢’d<a’b we get

a’vbsevd'.

Thus

eva' vbo) Vb sfve va')evd),
e@ vbhyva' sflevd)vd’,
a’ Vebsd vije,

ale’ vb'Yy2dec’ vy,
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@ which we needed.
i For the second part of C, let (a|b) S (flcd) and (e|ab) S (c|d). Then
: [; ab < fed,
7 . fledsa’h,

[3 eab < cd, i

and :

ﬁ ) c’dse’ab.
: We need )

I aeb S cfd

4
A and

(¢H'd s (ae)’b.

Averrnts
[ TYEVYy )

Since ab < ¢fd, certainly aeb < ¢fd. So we need only that

E (¢)'d < (ae)'b,

B .

H or equivalently that

. ae Vb’ sefvd’.
!2 Since

1 fcdsa’b,

L‘ avb' sfve' vd’,

- and since

h c’dse’ab,

11 eva' vb' Scvd'.

‘ Thus

. @vbYeva vbys{(fve' vd)(cvd),
H

# and so

i @V¥bevb' SRevd)IvVd,
i or

0 aeVb' sfevd’,

I or tinally

(¢f)'d < (ae)’b,

. which we needed.

To verify D, the axioms of decomposition, suppose that (ac|b) < (df|e)
(a|b) 2 (d|e). We need that (c|ab) S (f]de). Thus

-

109

and
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i
_}5 ach < dfe,
' @)’e S (ac)’b,
1
“ de S ab,
and
a’bsd’e. .
: We need
& . cab S fde
{
2 and
J fde < C,ab,
. and the first we have. From
li (@)’e < (ac)’b
we have
I‘; @ vfes@ veb,
and since
[} de < ab,
we have
' d’ Vf)des(a’ Vc'yb,
|} or
- fdesc’ab,
% - which we needed.
Assume now that (a]b) 2 (f|de), and that we have always that (ac|b) < (df]e).
[ : need that (c|ab) < (d|e). So we are given
¥ fd2 < ab,
6 a’bsf de,
[P ach < dfe,
e and
i (df)’e < (ac)’d,
L and we want
cab £ de
S and
d’e<c’ab.

Since acb < dfe, then cab < de. So we only need that

-

d’e<c’ab.
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From
(df)’e S (ac)’b,
and
: a’bsSfde,

we have

d’ vfes(@ ve')b
and

fvd' ve savd’,
o)

d vfe(fvd ve'Ys@ veblavb).
Thus
@ vpefvd’)y<s(a’ vc')ab,

or

d’esc’ab,

which is the inequality we needed. The other two parts are similar and their proofs are
left to the reader.
To verify axiom P, let (a]bc) < (d|e) and (a|(bc)’) < de. Then

abc < de,
d’esa’bc
a(be)’ < de,
and
d'esa’(be)y’.
We need that
(alc) s (d]e),
or that
ac<de
and
desa’c.

Now d’e<a’c since d’e<a’bc. To get ac < de, from a(bc)’ < de we have
ab’ Vc')< de.

Then
ab’ vV ac’ < de,

whence
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ab’ < de.
We have from above that
abc S de.
Then
ab’cVabc=ac<de )
and this proof is complete.

The axiom-:of subdivision obviously does not hold for our <.

‘)
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CHAPTER 4
ALGEBRAIC STRUCTURE OF CONDITIONAL EVENTS

This chapter is devoted to the study of the space of conditionals R|R as an
algebraic system. Equipped with the logical operations V, A, and ’ introduced in
Chapter 3, it is a system generalizing Boolean algebras, or Boolean rings, and provides a
vehicle for manipulating conditional events, analogous to the manipulation of events in
Boolean algebras. Further, it represents a departure from classical logic, and fom
quantum iogic. First, in Section 4.1, we examine the basic algebraic properties of R|R,
concentrating on its similarities and its differences with those of Boolean 2lgebra. In
Secdon 4.2, R|R is characterized as an abstract algebraic system, and a Stone
Represen. sn Theorem is established, generalizing Stone's theorem for Boolean algebras.
In Section 4.3, R|R is identified with a semi-simple MV algebra via the work of Belluce
(1986), yielding a connection with multi-valued logic, and providing yet another Stone
Representation Theorem.

4.1 Basic algebraic properties

We now turn to a detailed examination of R|R as an algebraic system. Recall that
R|R is the set of all cosets of all principal ideals a + Rb’ of the Boolean ring R, and we
have adopted the notation (a|b) for the coset a + Rb’. In the Boolean ring R, there are
the usual operations V,‘A, +,and “,and R hasa 0 anda I. We assume as known the
basic properties of Boolean rings, or Boolean algebras. Cormresponding operations V, A, +
,and “ have been defined on R|R, and some of their properties have been noted in
carlier sections. Specifically,

(1) (a|b) v (c|d) = ((avc)|(ab V cd V bd)) = (ab V cd|ab V cd V a’bc’ d),
() (a|b) A(cl|d) =((aAc)|(@’b V c’d V bd)) = (abed|a’b V ¢’d V abcd),
(3) (alb) = (@’|b),

@) (a|b) + (c|d) = (a + c|bd).

Above, if x, y € R, then xy is written for x A y. Note that the symbols V, A, +
and ’ are used both as operations in the Boolean ring R and as operatons in R|R. The
contexi should always make it clear what operation is meant. The most basic and
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elementary algebraic propernies of R|R are these: O

Theorem 1. The following hold in R|R.
() (a|b) Y (@|b) = (@]b) (V is idempotent);
(2) (a|b) A (a|b) = (a]|b) (Aisidempotens);
3 (@|b) Y (c|d) = (c|d V(a|b) (Viscommuative); .
@ (a|b) A (c|d) = (c|d) A(a]|b) (A is commutative);
- ) (a|b) + (c|d) = {c|d) + (a|b) (+ is commutative);

A ©) (@D V|V (elN= @|b)y(c|dvel) (Visassociasive);
i ) ((@|by A (c|d) r(elh = @]b) A(c|d Aelf) (s associative);
1,’ ©®) (@]|D) + (c]d) + elp = @|b) + (c|d + elp (+ is associative);

©) (a|b)’’ =(alb) ( isinvolusive).

Proof. The proofs of these arc routine from the definitions of the operation.
However, we give proofs of (1), (4), (5), (6), (7) and (9) as iliustrations of elementary
manipulations in R|R.

) (@) (a]b) ¥ (a]b) = (aVa)|(ab V ab V B)) = (a]B).

| @ (a]b) A(c]d) = (ab|(a’bVc’dV bd)) = (ba|(c’d vV a’b V db)) = (c|d) V (a] D). ‘
() (a]b) + (c]d) = (@ + &)]cd) = ((c + a)|dc) = (c|d) + (a] ).

@ (@]b) A(c|d) Aelp) = (ac|@’B ¥ c’d VY b)) A (e])

- asrepes

[' = (ace|((@d)’ @bV c’d Vbd) ¥ €'F ¥ (@b ¥ ¢’d Y b)),
alb A (c|d A e]f) = (a]b) A (ce|(c’d ¥ e’f v df))

L = (acel(@’b V¥ (ce) (c’d v e’fv d) ¥ b{c’d V e’f V df)).

{: Thus we need to show that

@)’ (@bvVc’'dvbd)yve'fv@bvce'dvbdlf=

i: @bv(ce) (c’dvefyad)vb{c’'dVve’fVdf)).
§ The first is
| &

' - (ce)’'a’bV(ac)'c’dV (ae)'Bdv e’fva’sfvc'di v baf=
ts
a’bve’a’dva'c’dve'dva’bdve’'bdve fva’bfvc'dfvodf=
a’bvc’dve’sybdf,

and the second is

_— - — = - T I |
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a’bV(ce)c’dV(ce) e’fV(ce)dfVbc'd VN be'fV bdf =
a’bvce’dve’c’dvce’e’fve’fve’dfve’dfvbc’d v be'fV bdf =
a’bvce’'dve’fvbdf

©) (@|b)’* = (a"|b)" = (a’"|D) = (a]b). o

None of the properties (1) - (9) above involve interactions between the various
operations. We will address those properties momentarily. First, R|R has some special
elements, (0]I) and (Z|I), which act as a "zero" and "one" should act. In addition, there
is the "indeterminate” element (0]0) = (1|0) = R. .

Theorem 2. The elements (0[1), (1|1) and (0|0) satisfy the following properties.
(1) (alb) + (0|1) =(a|b) ((0}1) is an additive identity);
@) @A) =(a|b) (A|1) isamultiplicative identity);
3) (alb) A©]]) = O] D)
@ ©|n" =a|n;
©) D" = O}

©) (a|b)=abVv (" AQ|0);
(7) The unique elemen: (a|b) in R|R suchthat (a]|b)’ = (a|b) is (0]0).

Proof. Again, these properties are straightforward. For example,

@|b) A1) = (a|(@’bVOVD)) = (a]b),
and
(a|b) A 0| 1) = O}@@’bVIVDb)=©|D. o

Note that there are no other additive or multiplicative identities other than (0|I)
and (I]1). If x and y were two additive identities, then x + y = x =y, and similarly
for multiplicative identities.

The following theorem provides some connections between the various operations.
They are fundamental ones.

Theorem 3. The following hold in R|R.
(1) (a|b)y A(c|dVelp = ((a]b) Alc|d) V((a|b) A (elf)) (A disibutesover V),
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@) (@|b) v ((cld) A (e]f)) = (a]b) V (c|d) A ((a]b) V (e]N) (v distributes over A); .)

? @) (@B V(c|d)’ = @] Acld)'s
@) (@|b) A (c|d)’ = (a|b)’ Vv (c|d)’ ((3)and (4) are DeMorgan’s laws).'
J Proof. We will prove (1) and (3). Then we will sce that (2) and (4) are immediate

consequences of (1) and (3). For (1),

-

[

@) A(cldvelf)=@|b)A(cVe)|(cdVvevd =

alcve)|@bvc'e'(cdvefVdVb(cdVefVd =

| SR

a(cVve)|@'bvc'e’dfVbedV bef v bdf).
Now

((@]) A (c|d)) V (a]|b) A (e|P) = (ac|(a’b V c’d V bd) V (ae|(a’b V e’f V b)) =

S vmy
Ao h
«

(alc Ve)|(acbd V aebf va’'bV c’de’fV c’dbf V bde’f v bdf) =

" P meanal

(alc v e)|(abcd V abef Y a’b V ¢’de’f v bdf).
Thus, we need to show that .)
a’bVc’e’df VbedV bef V bdf = abcd V abef V a’b V ¢’de’f V bdf.

Clearly, the left side contains the right. But since abed V a@’b contains bcd, and
abef Vv a’b contains bef, the right side contains the left. To prove (3), note that

(a]b) V (c|d)’ = (a Vc)|(@b Ved Vb))’ = (a’c’ |(ab V cd V bd)),

f‘ and
¥ @|b)’ A(c|d)’ =(a’c’|(abV cd V bd)).
!". The equations

((@|b) V(c|d Aelf)) = (@|b) V(c|dAelp)’
= ((@|b)” Alcld Ael)’) = ((@]b) V¥ (c|d) A ((a]b) V (e|),

((alb) A (c|d)" = ((a|b)’” A(c]|d)’’) =

(@a]|b)’ V(c|d)')'’ =(a]|b)’ V(c|a)’,
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establish (2) and (4). a

We now come to some negative aspects of R|R. These center around the
operations + and . First, R|R does not have negatives {or additive inverses). That is,
given {a|lb) in R|R, there does not necessarily exist an element (c|d) such that
(@|b) + (¢|d) = (0]1). Indeed, if so, then ’

’

(@]d) + (c|d) = (@ + c)|bd) = (0]1),

whence bd =1,s0 b=1 and d=1. In that case, (a|b) = (a|]), and it is its own
negative. Thus the elements in R|R with negatives are precisely those of the form
(@]1). In R, a + a = 0. This does not carry over to R|R. For example (a|b) + (a|b) =
(0|b), which is not (0|1} unless b =1. Thatis, R|R is not of characteristic 2.

Secondly, A does not distribute over +. A simple example is this:

dpwia + dim=A|b)d|a) + A|b)I LN,

the first being (0]df) and the second being (0|bdf).
Thirdly, * is not a true complement for R|R. That is, (a|b) V (a|b)’ # (I]1). In
fact,

(a|b) V (a|b)’ = (a|b) V (@’ |b) = (I|(@b Va’b Vb)) = (I|(aV b)),
which is not (Z|I) unless av b= 1. Also,
(a|b) Aa|b)’ = (0](@’b vV ab Vb)) = (0|b) = ©|I)

unless b = 1.
These negative aspects of R|R are summed up in the following theorem. In
particular, R|R is far from being a Boolean ring.

Taecrem 4. The following hold:
(I) R|R is not a group under + ; specifically, not every element has a negative;
(2) A does not distribute over + ;

(3 ’ is not a complementation operator on R|R; specifically, (alb) V (a|b)’ is
not necessarily (1|1), and (a|b) A (a|b)’ is not necessarily (0]1).

(@) R|R s not of characteristic 2, that is, (a|b) + (a|b) is not necessarily (0]1).

’

In a Boolean ring, the four basic operations, v, A, +, and are not independent.
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For example, @ + b = a’b V ab', which corresponds to the "exclusive or". This relation
also holds in R|R as we have noted back in Section 3.2 Thus, properties of + in R|R
are reflections of properties of V, A, and and ‘. We have just noted some negative
properties of +, indicating that it will be of at best limited importance and interest in
R|R. For these reasons, and because V, A, and ’ are more conceptually fundamental
operations in logic and probability, we will drop the operation + from our considerations.

In Section 3.3, an order relation on R|R was introduced This order relation will
now be examined in some detail. We first establish the appropriate language in which to
discuss this topic. A good reference for the following material is Griitzer (1978).

Definition 1. A partially ordered set is a set L with a relation < on L such that for all
X,y z€L,

(I) x£x (S is reflexive);
(@) ifxSyandy<Sx, thenx=y (Sis anti-symmetric);
(@) ifx<yandySz thenx<z (Sistransitive).

This partially ordered set is denoted (L, <), or just L if there is no confusion as to
the partial order under consideration. Let (L, <) be a partially ordered set, and let S be
a subset of L. The element x is an upper bound of S if s<x forevery se S. The
element x is a least upper bound, or supremum, or simply sup, of § if x is an upper
bound and x Sy for any upper bound y of S. Lower bounds, and greatest lower
bounds, or infima, or inf are defined analogously.

Definition 2. A lattice is a partiaily ordered set L such that every pair {a,b} of elements
of L has a sup and an inf.

The sup of {a,bp) is usually denoted a V b and the inf by a A b. Note that this
makes sense, namely that {a,b} has only one sup. If x and y were both sups, then x <
y since x< any element y whichis 2 all elements in {g,b}. Thus x =y. Similarly

infs are unique. Now V and A are two binary operations on L, and they satisfy the
following conditions.

(1) x¥x=x and x Ax=x (Vand A are idempotent),

(2) xVy=yvx and x Ay=yAx (Vand A are commutative);

B xvy)Vvz=xV(yVvz) and xAyY)Az=xA(y Az) (Vand A are associative).
4 xV(xAy)=x and x A(x Vy) =x (Vand A satisfy the absorption identities).
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Property (1) follows from reflexivity and anti-symmetry, and (2) and (3) directly
from the definitions of sups and infs. To getx V (x Ay) = x in (4), note that x > x by
veflexivity, and x 2 x Ay by definition of x Ay, so x is an upper bound of x and
xAy. If z is another such upper bound and z < the upper bound x, then since z 2 x,

z=Xx. The other part of (4) follows similarly. Th- following two properties should also
be noted. :

(5) x2 xAyand x<xVy;
(6) x=xVvy ifandonlyif y=xAy.

Property (5} is immediate from the definitions of upper and lower bounds, and (6) is
a consequence of (4). For example, if x =x Vy, thenby (4),y A(xVy) =y =y Ax. The
other half of (6) follows similarly. Actually, the absorption identities imply that v and A
are idempotent, but we will not concern ourselves with such technical niceties here.

We provide the following theorem and its proof, since it will hold for our R |R, and

the proof in general is as easy as for the special case of R|R. We have already noted its
converse.

‘theorem 5. If L is @ non-empty set with two binary operations V and A which satisfy
(I)-(4) above, then L is a lattice under the partial order givenby x<y if x=x A y.

Proof. First we get < to be a partial orderon L. x Sx since xAx=x. If xSy
and y <z, then

XAz=@ADAzZ=XAAZD)=XxAy=1,

so xSz If x<y and y<x,then x=xAy and y=y Ax, 50 x=y. Now we show
that x Ay is theinfof {x;y} and xVy isthe supof {xy}. xA(xAy)=xAy,s0
XAy s x, and similarly x Ay <y, s0 x Ay is a lower bound of {xy}. If z<x and
z<y, then

XAz=2z=yAz=YyAXxAzZ

s0 zsx Ay Thus x Ay istheinfof {xy}. By one of the absorption laws, x A (x V y)
=x,50 xSxVy, and similarly y<xVy. X x<z and y<z then x=x Az and
Yy=yAz Intumm,z=2Vx=2zVy,implying

z=zVz=0V)V@EVy)=2zv(xVy),

implying x Vy Sz, thatis that x Vy is the sup of {xy}, and (L,<) is a lattice. O
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Thus we have the following situation. If (L, <) is a lattice, then (L, V, A) satisfies
properties (1) - (4) above, where V and A are defined by avb = sup{ab} and
acb = infla,b}. Conversely, if L(V, A) satisfies (1) - (4) above, then (L, <) is a lattice,
where £ is defined by a < b if @ = aAb. Such an algebra (L, V, A) is also called a lattice.
Thus a latdice (L, <) yields an algebra (L, V, A) satisfying (1) - (4) above, and an algebra
(L, V, A) satisfying (1) - (4) yields a lattice (L, ). A critical fact is that these procedures
are reciprocals of each other. Thus the concept of lattice, and the concept of an algebra
with two binary operations satisfying (1) - (4) are the same. We refer the reader to
Gratzer (1978) for details.

Now back to R|R. The two operations V and A on R|R do indeed satisfy (1) through
(4) above. We have already observed that (1), (2), and (3), hold. For (4),

(a]b) V (@]|D) A (c|a))
= (a|b) V (a]| D) A ((@]b) V (c|d)
= (a|b) A (avc|(ab ¥ cd V bd))
= (a|(a’b V (aVc) ' Mab V cd V bd) ¥ b(ab V cd V bd))
= (a|((@’bVa'c’bd V ab V bed V bd))
= (a|((@’b v ab v ba)) = (a|b).

The other absorption law follows similarly. Thus by Theorem 5, (R|R, <) is a lattice. In
considerations of R|R, emphasis is usually more on V and A than on &, the former
being the more fundamental concepts for us. Thus we prefer the following statement.

Theorem 6. (R|R, V, A) is a lattice.

If L isalattice and L itself has a sup and an inf, then that sup is denoted I and
that inf is denoted 0. In that case, L is called a lattice with 0 and I, or a bounded
lattice. Note now that R|R is a bounded lattice. The I is the element (I]I) and the
0 is the element (0[I). To see this, recall our criteria that (a|b) < (c|d), namely that
acscd and c'd<a’b. Thus (a|b) < (I]|1) since ab<1 and 0 Sa’b. Thus (I|1)
is the 1 of the latdice R|R. Similarly (0]I) is the 0 of it, and R|R is indeed a
bounded lattice.

A lattice is called distributive if the following conditions hold.

XAQPVZD)=EAY) V(XA
xVOAZ)=EVY)AREV2).

We have seen that these distributive laws do hold in R|R, so we have the following
theorem,

.)
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Theorem 7. (R|R, V, A) is a bounded distributive lattice. The 0 is the element ©\|n,
and the 1 is the element (I1{1).

In a bounded lattice, an element x isa complementof y if x Ay=0 and xVy=
1. Complements, if they exist, are unique in bounded distributive lattices. The
complement of x is usually denoted x’. Note that x”” =x. A bounded lattice in which
every element has a complement is called a compiemented lattice. A complemented
distributive lattice satisfies DeMorgan's laws:

VY =x"Ay’;
Ay =x"vy’.

The details may be found in Gritzer (1978), and we will not pursue themn there, mainly
because R|R, our lattice of interest is not complemented. Were it complemented, then
the complement (c|d) of (0|b) would have the property that

(|d) V (0]b) = (cd|d) V O|b) = (I |I) = (cd|cd V bd),

whence ¢d = I = ¢ = d. But the complement of (I]|]) must then be (0|b), butis (0]I)
instead. Thus no element of the form (0|b) can have a complement unless b = 1. In
particular, our operator * on R|R is not a complementation operator. There does not
exist a complementation operator on R|R with respect to V and A.

There is a weaker notion than complement. In a bounded lattice, an element x* is
a pseudocomplement of x if x V y* = 0, and if x A y = 0 implies that y S x*. An element
can have at most one pseudocomplement; if a and b are pseudocomplements of x, then a <
band b < a, so a=>b. Thus a pseudocomplement of an element x is that unique largest
element whose intersection with x is 0. A pseudocomplemented latiice is one in which
every element has a pseudocomplement.

Definition 3. A Stone algebra L is a distributive pseudocomplemented (bounded) lattice
which satisfies Stone’s identity: for all a € L,
a*va* =1

It is a fact that in any Stone algebra, the pseudocomplementation operator *
satisfies DeMorgan's laws (Grdtzer, pages 113, 119). A crucial fact is that R|R is a Stone
algebra, and this is not entirely obvious.

Theorem 8. (R|R, V, A) is a Stone algebra. The pseudocomplement (a|b)® of an element
(a|b) is (a’b|I) thatis a’b. DeMorgan's laws hold for *:
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122 Algebraic structure of conditional events

(@|b) V (c|d)* = (a]|b)* A (c;4)°; .)
(@|b) A c|d)* = (a]b)* V (cd)*;
Proof, First, we show that (a|b)* = (a’b]]).

(a|b) A(@’b|D) = 0|a’bV avb’ Vb; = (0] D).

If (c|d) A@]b) = 0]D), then (cal(c’d ¥ a’b V bd)) = (0]). Now, from the
characterization of € on R|R, (c|d) < (a’b|l) if and only if cd<a’band aVb’ < c¢’d.
We have ¢’d V a’b V bd = I and ac = 0. From the equation

c’dva’bvbd=1,

by first conjoining with 5’ and then separately with d’ we get b’<c’d, and d’ £ a’b.
Thus b’ < ¢’, avb’ <d, and since ac = 0, also a S ¢’. We have then that aVb’ < c’'d It
remains to get ¢d S a’b: But, from ac = 0 we have ¢ S ¢’ and from b’ < ¢’ we have ¢ <
b. Thus cd < a’b, and so (a}b)* = {a’b| D).

DeMorgan's laws can be verified easily now that we have an explicit formula for *

((a|b) V (c|@)® = ((aVc|(ab V cd V bd))* = ((@’c’)ab Vcd vV bd)|1) = (a’c’bd| D), .)
and
(a|b)® A (c|d)®* = @'b|D A(c’d|]) = (a’c’bd|1).
The other part of DeMorgan's laws follows similarly. o

Remark. Thus we have that R|R has a rather rich algebraic structure, being a
pseudo-complemented distributive lattice, in fact, a Stone algebra. However, it is not
complemented, that is, does not have an operator # on it such that a@® A @ = 0 and
a®°Va=1 for all @. This situation is somewhat different from that of quantum logic.
Indeed, a space of quantum events is a collection of closed subspaces of some complex
Hilbert space and its algebraic structure is also that of a lattice, but of a non-distributive
yet complemented one. (See Gudder, 1988.) As pointed out in Section 3.5, the truth table
of the pseudocomplementation operator * on R|R is the truth table of Heyting's
negation operator in his three-valued logic.

The structure R|R is one generalization of Boolean algebras. It is a special kind of
Stone algebra, and will be so characterized in the next section. But it can be viewed other .)
ways, depending on which operations on R|R to investigate. For example, looking at

other operations on R|R in conjunction with our V and A makes R|R into a semi-simple
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i p MV algebra, and this will be discussed with Section 4.3, with an attendant Stone
' representation theorerm.

L e |

2 42 An abstraction of the space of conditional events

Section 4.1 culminated with the theorem that R|R is a Stone algebra. One way to
give an algebraic characterization of R|R is to identify it among Stone algebras. That is
what we will do. Thus we need to determine just what conditions on Stone algebras make
them precisely of the form R|R. For such a characterization to be a good one. the
conditions added should be succinct and conceptionally pleasing, involving fundamental
entities associated with Stone algebras. Two such entities are in the following definition.

[ Y
Casun o f

Definition 1. Zet L be a Stone algebra and * its pseudo-complementation operator. The
skeleton of L is the set L* = {a* : a € L}. The den.?e set of L is the kernel of *
DL)={a:aeL,a*=0)}.

may be found in Gritzer (1978).

[ 3
[
g‘ We need a number of properties of L* and D = D(L). A more complete discussion
1 Theorem 1. Let L be a Stone algebra. The following hold:

. I a<ga**;

% (2) a<b implies that a* 2 b*;

{ G) a* = a***;

) 4) acl® ifandonlyif a= a**;

g ) @Ab)*=a"Vvb*;

l, © (@ayb)*=a"Ab*;

Proof. (1) and (2) follow immediately from the definition of pseudocomplement.
(1) and (2) irply that a® 2 a***, and (1) applied to a* yields a® < a***. Thus (3) holds. If
ael’ thena="b%s0oa" =b"""=b"=a. If a=a",then a=(a")*, whence ae L*, so
! K (4) holds.

atadl
i

P
cure
.

To prove (5), we have

1=
, @AD)A@ VD )=(@AbAG)V(@AbADL)=0VO0=0.

"1 If(@Ab)Ax=0,then(bAx)Aa=0,sothat (b Ax)<a’. Thus

D
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(GAx)AG*SaAa™* =0, .)

so (x A @**) A b =0, implving that x A ¢** S b*. By the Stone identity, a® vV a** = I, and
thus
x=xAl=xA@VvVa™)=xAa)VxAa**)Sa’ VD"

Thus (5) is proved. -
To prove (6),

@VDA@ AD)=(@Aa*"ADYV(BAGAD)=0V0=0.

IfxA(@avb)=0,thenx < (aVbd)*'. ButaVb=2aimplies that (@ V b)* < a*, so x < a°,
and similarly x < b*, whence x < a* A b*. Thus (a V b)* =a* A b*, and (6) is proved. 0

The properties in the theorem yield the following fundamental facts about L* and D.

Theorem 2. Let L be a Stone algebra. Then

(I) L* is a Boolean algebra whose 0 and 1 are those of L;
(2) D is a filter (dual ideal) and I €D. In particular, D is a distributive lattice .)
with 1.

Proof. Clearly 0* = I and I¥ = 8, so that 0 and I are in L*. From Theorem 1,
@ AB*)=(aVb) and (@* vV b*) =(a A b)*, sothat L* is a sublattice of L. Since a* V a**
=1, * is a complementation operator on L*. Thus L* is a Boolean algebra.

Ifa,beD,then(@aVb)*=a*Ab*=0A0=0and(@Ab)*=a*Vb*=0,s0Disa
sublattice. Ifae D, thenforul xe L, (@aVx)*=a* Ax* =0 Ax* =0, whence D is a
filter. Since I*=0,1¢€ D. o

Now we turn to R|R, identify its skelcton and dense set, and note some of their
special properties. Recall that the pseudocomplementation operator * on R|R is given
by (a|b)* =(a’b|I). Thus it is clear that (R|R)* = {a|] : a € R}, which we denote by
R|1. For (a|b)* tobe (0}1), we must have (a’b]1)=(0]I),so a’b=0. Thus b<a,
so (a|b) = (b]|b) = (1|b). Tt follows that D(R|R) = {1]b : b € R}, which we denote by
I|R. Thus we have the following theorem.

Theorem 3. The skeleton of R|R is (R|R)* = {(a]I) : a € R} = R|1 =R, and the dense .)
set of R|R is DIR|R) = ((I]|a) :a€ R} = {(a]a) :ae R} = I|R.

Both R|I and I|R are copies of R. In fact, the elements of R|! arc identified with
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the (unconditional) events of R. The mapping R|I =+ I|R : (a|I) + (I]a) is clearly a
bijection. Since

(Ila) VI |b)=(|{@aVb)) and (I|a) A(I|b)=(]|(aAD)),

that mapping preserves V and A. Further, (0]1) and (Z|I) of R|I go to (1]0) and (1]1),
respectively of I|R, and (a|I)’ = (a”|I) goes to (I{a”). Thus.I|R is a Boolean algebra
with its 0 and I the elements (7|0) and (I]I), respectively, and with (I]a)’ = (I|a’).
Thus the dense set of R|R is also a Boolean algebra, and is isomorphic to the skeleton of
R|R. Since I|R is a Boolean algebra, it has an operation + given by x + y = x"y V xy*
making it into a Boolean ring. This + is not the + inherited from R |R since the

’

complementation operation ” on I|R is not the restriction of the complementation * on
R|R. '

Now suppose that L is a Stone algebra, and it is known that its dense set D is a
Boolean algebra isomorphic to its skeleton L°*. There is no obvious way to effect this
isomorphism. However, since D is a filter,a Yxisin D for any a € L and any x ¢ D. The
mapping a -+ a V x is a homomorphism from L into D, and in particular from L* into D.
Just observe that (@ V x)(b V x) = ab V x so that the mapping preserves V, and similarly it
preserves A. If D is Boolean, or more generally, if D is a lattice and thus has a 0, say 0,
then that is a natural element to pick in hopes of yielding an isomorphism between L* and
D. In R|R, the element 0 is (I]|0) = (0|0) as noted above, and indeed the mapping
(@]1) = (a|1) V (1]0) = (a]a) = (I]a) effects the isomorphism already noted between R|I
and I|R.

We sum up.

Theorem 4. In R|R, the skeleton R|1 and the dense set 1|R are Boolean algebras,
and the mapping (a|l) - (a|I) v (1|0) is an isomorphism between them.

It turns out that the conditions expressed in Theorem 4, namely that the skeleton
and the dense set are Boolean algebras, and the mapping @ -+ a V 0 is an isomorphism
between these two Boolean algebras, characterize R|R among Stone algebras. This is
made precise in the following theorem.

Theorem 5. Let L be a Stone algebra, L® its skeleton, and D its dense set. Suppose that D
is a Boolean algebra, and that the mapping a - a V ( is an isomorphism from L* to D,
where Q is the 0 of D. Then, the mapping ¢ : L - D|D :a-((aVv Q|(@aVa®))isan
isomorphism.
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126 Algebraic structure of conditional events

Proof. First, note that ¢ is indeed a mapping from L into D|D. a V 0 is in D since
Disadualidealand QisinD. (@vVa*)* =a* A a** =0,s0aV a*is alsoin D. We now
break the proof up into several steps.

(1) ¢is one-to-one.
Suppose that (@ VQ)|(@aVa*) = bV D|(b Vb*). Then

@VOA@Va)=bVDADBYVDL)=aV@A@Va)=av0=bVo

WealsohaveaVa*=bVb* sothataVa*=aVa*VQ=>vV QVa'. Multplying
through by a, we geta A (@ vV a*)=a A (b Va®) = a=ab, and by symmetry, b=ab, soa =
b. Thus @ is one-to-one. '

(2) ¢ preserves V.

PV EDY=@VDlava)VOVD|GVDL)=
@vovO|[(@VvDA@VaNVBVDAGYDLDV(@Va)ABVb*Y)) =
@vbvQl@avevbvav@ab) V@ AbV@Ab) V(@ Ab*))=
@vbvQl@vbv(@ Ab)=
@vbv@|@vbv@vb®) = gaVvb).

Some preliminaries are needed before showing that @ preserves A. Since A in
D|D involves the complement in the Boolean algebra D, we need to figure out what it

is. We have the isomorphism a + a V 0 from L* to D, and the complement operator on L*
is * itself. Forae L, letx p be the (unique) element in L* such that x, v Q0 =aVvQ Thus

the complement in D, which we will denote by ’, is given by (@ V Q)" =x a* v 0. This is
simply because the mapping a -+ a V @ is an isomorphism between L* and D. If g itself is
in D, then @’ =xa‘ vo.

For a € L, it turns out that « pertinent question for us is the relation between a@* and
xa'. Note that forae L, a = a**A (a V @*). This is because a** 2ag and a** Aa = 0. Thus
avl=(@*vO A(@ava®)sinceQA(@va®) =0, sothat

avQ= xaVQ=(a“VQ)A(aVa‘)=
@ vVOA@vova* v =
(a"VQ)A(xaVQVa‘VQ)=
@ Ax) Vo

Now from x, v Q=@ Ax)V 0, we geta®* A X, =Xpsothata™ 2x . In particular,
a**=a"< xa'. We sum up these facts.

.)
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(3) ForaeL,letx 2 be the element in L* such that x, ¥ 0 =a Vv Q. Then the complement
operator ” in D is given by @V Q" =x ° V0 anda*sx "

(4) o preserves A.
o) APD)=((@avVD[@VaNABVD|BVDY)) =
@VOABYVD[(@VD A@Va) VGV AGVDE)V(@va)ABYDB) =
((a v OAD VQ))I[((xa‘ VOA@va))V ((xb‘ VOADVD)V({@Va®)A@vDbdY)).

Since

(xa‘ VOA@Ya®)= (xa‘ YVOA@VOva'vd =
(S VOA@VDIV (&, VO A VD) =
Qvx at,
and since a* <x °, wehave @V x *a” = a* V0. Thus

¥a) A ¢(b) =

@VONO YD) [(@VaAVDE VOV@ADYY (@ AD)V(@AD) V(@ ADY)] =
(@VOANOYD)|(@ VD V(aAbd)
(@AB)VO|@Ab)*'vV(@Ad) =
@(a A b).

To complete the proof, we need that ¢ is onto. Given an element (a|b) in D|D,
it is not obvious just what element ¢ takes onto it. How would we find this element in
the case L were R|R itself? In that case, we are given an element (I|a)|(Z|d) =
(I|ab)|(I]b) in D(R|R)|D(R|R), recalling the fact that I|R is a Boolesr ring, and
need the element (a]b) = (ab|b), which @ does indeed take to (I|a)|(I}b). Tnere is one
key observation to be made. First note that for (a|b) in R|R, say, (a|b) = (ab|b) = (ab]I)
V (0]b). Now consider our map @ as applied to R|R. Then

(a]b) =

((alb v I|0)|(a]b V (a]b)*)) =

((ab|1vO0[bV 1]|0)|(ab]I Vv O|bV (ab]l vO|b))) =
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(I ]ab)|(1]bY).

Since

@l vElBvU|0) =U]ab) = (ab|D V|0,
and

-

@B|D) v (O[5 V (b]1 v 0]BY = (I1]B) = ©]5) v O]5Y",

we will be in business if from (I |ab)|(I } b) we can construct, in a Stone algebra satisfying
owr kypotheses, elements corresponding to (ab]I) 2ad (0]5). So we know the elements
(I}ab) and (I1|b), and so know eb and b. The element comresponding to (ab]l) is, in the
notation above, Zanb The element corresponding to 0]b is the element xb‘ A Q, since in
R|R, (0]b) = (b]1)* 4 (1]0). Now this dictates that given the element (a]b) in D|D, @
should take x b Y (xb‘ A 0) onto it. We check:

Kxapp ¥ & AD) =
Cegpp V & AD VO, V " ADV Gy ¥ 0" AD)" =

Gogpp ¥V OIGE, 0 VOV (G ypp)" Axp) = o
(@AD)|@Arby «Iaﬁb‘ Yo A(beQ)) =

@AB)|(@AB) Y (@AB) AB) =

@ad)|(@Ab)v@ vb')Ab) =

@Ab)|((@rb)v(a Ab) =
((a A B)|b).

This completes the proof. o

Several comments are in order. First, since L* is isomorphic to D, L is isomorphic
to L*|L*. The theorem was stated using D|D since the isomorphism from L into D|D is
more simply 2nd elegantly defined than the one from L into L |L".

Second, in the statement of the theorem, one need only assume that D is a bounded
lattice and that a » a V @ is 2 one-to-one ma2pping from L* onto D. That mapping is then
automatically an isomorphism since V and A are preserved in any case.

In R|R, one has the "complementaton” “ given by (a|b)’ = (a”|b). No meation cr
use of it has been made in our theorem. In the Boolean algebma L*, * is the
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complementation operator. In a Stone algebra satisfying the hypothesis of Theorem 5, the
Boolean algebra D must itself also have a complementation operator, and we identified the
complement of an element a in D as an element of the Boolean algebra D to be the

element x a* v 0. In a Stone algebra satisfying the hypothesis of Theorem 5, what is the
operator corresponding to * in R|R? The element a in L corresponds to (@ V Q)|(a V a*)
in D|D, and :

(@VO|@va)' =@vD'|@ava) = (x' VO|@Vva)
The preimage of this element under our isomorphism is the element

X

*,

* « V(x DAD,
V O)A(ava ) ava

E 3
which by a routine calculation is a* v (J_c 2 Aa*™ A Q). In other words, forain L,
a’ =a V(xa'/\a"‘ AQ)=xa‘ A@vQ)=a"V (xa' AD).

Definition 2. An abstract conditional space is a Stone algebra L such that

(1) its dense set D is a bounded lattice, and

(2) the mapping from its skeleton L* to D given by a - aV Q, where Q is the 0 of D,
is a bijection.

Of course, D is also a Boolean algebra. An alternate way to phrase this definition is
to require that D is a Boolean algebra and that the mapping is an isomorphism. That is
the phraseology in Theorem 5. The conditions in Definition 2 are not really weaker
although they appear to be. In any case, an abstract conditional space is just R|R for
some Boolean ring R.

There are other versions of Theorem 5 available to us. In R|R, the operator ” plays
a significant role, as does the special element (1]0). One can arrive at a representation
theorem by postulating these two entities on a Stone algebra and requiring certain
properties of them. The following is an example along this line.

Theorem 6. Let L be a Stone algebra, L* its skeleton and D its dense set. Suppose that
there is an element Q € L such that D = L* V (, and that there is a unary operator * on L
that coincides with * on L*, and satisfies (x V)’ = x’ AQ’ forallxe L*,and Q’* = 0.
Then L is isomorphic to L* |L*.

Proof. Ifxe L*,then x VO™ = (x" AQ")*=x"* v Q’* = x V 0 = X, so the map
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L*+ D :x-xVQ0is abijection. Since 0 V@ = 0 is in its image, 0 € D. The map

L-D:x-+xVdforanyde D preserves V and A, so L* and D are isomorphic Boolean

algebras, Q is the zero of the Boolean algebra D, and Theorem 5 . applies.
a]

4.3 Semi-simple MV-algebras

-

This section consists of proving that the algebraic systzm R|R can be enriched in a
simple way to obtain a (Chang) MV-algebra, so that a formal relationship with fuzzy
logics is established. This latter fact follows from Belluce (1986).

First, as stated earlier, in view of three-valued logic connection, R|R, equipped with

any given system of basic operators on it, is an algebraic structure generalizing boolean
ring structure. This generalization can be viewed in various different ways, depending
upon the given system of operators. In Section 4.1 we have seen that when R|R is
equipped with our operators (A, V, (+)"), then R|R is a special t).rpe of a Stone algebra

where the associated pseudo-complementation * is

@lb)*=a" Ab (=a’-b).

In a (independent) pioneering work, Schay (1968) took the equivalent viewpoint by
modeling conditional events as generalized three-valued indicator functions. By doing so,
he considered R|R as an algebraic structure with a system of five operators
", U, AV, (+))) (where his A, Y, ()’ are different from ours).

Abstracting this algebraic structure, he spent almost half of his work on establishing
a Stone's Representation Theorem for his new structure (Schay, 1968, p. 338-342). While
the mathematics involved is interesting, his axioms for the abstract structure are quite
complicated.

In another direction, motivated by the desire of establishing a three-way relationship
among formal systems, MV-algebras and fuzzy sets in the context of multi-valued logics
(as an analog to the case of classical two-valued logic, where there is such a relationship
among formal systems, Boolean rings and set theory), Belluce (1986) considered a
generalized structure known as Chang MV-algebra. This algebraic structure is known in
multi-valued logics (Chang, 1958, 1959). Roughly speaking, such a structure is obtained
when the idempotency and the distributive law in a boolean ring R(+, ) are both
dropped.

Specifically, following Belluce, an MV-algebra is a non-empty set A with two

binary operators +, - , and one unary operator = with 0, ] satisfying the following
conditions.

®
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{
P (i) <A, +, 0> and <A, -, I> are commutative semi-groups with identity.
(i) Forall x,ye 4,

] x+x=1 xx=0,x=0,0=1.
(iii) Forall x,y€ A4,
{ BFy=xy Xy=x+y X=x.
- (thatis, ~ is involutive, and of "De-Morgan” type with respect to + and -).
I i @(iv) + and - are such that, if one defines two "boolean-like" operators
(} xVy=x+xy, xAy=(+3)y,
A then <4, V, 0>, <A, A, I> are also commutative semi-group with identity.
3 (W Forall x,y,z€ 4,
{5 x@PVD)=xyVxz, x+PAEx+2)=x+(YA2).
r Notice that <A, A, V, I, 0> 1is a bounded commutative lattice where the associated order
? relation € is xSy ifandonlyif x Ay=x.
3
b Definition. An MV-algebra A is said to be archimedean when for each x, y€ A, if
V G+.+x)=nx<y forall n20,then x-y =x.
. A result in Belluce (1986) stated that archimedean MV-algebras and semi-simple
f MV-algebras are the same.
With analogous algebraic concepts for MV-algebras, a MV-algebra A is said to be
{_ semi-simple if its radical is zero. (See Belluce, 1986, for details.) The point is this:

semi-simple (or equivalently, archimedean) MV-algebras are precisely "bold" algebras of
fuzzy sets (Belluce, 1986, Theorem 4), where by a "bold" algebras of fuzzy sets, one
means a subalgebra of the MV-algebra (under induced operations) of all fuzzy subsets of

some space Q, that is, the collection of all functions f: Q- [0, 1] Specifically, [0, 1
becomes an MV-algebra with:

MM

Secacnnns

v
waay
-

.'. OO N

(f + g)(@) = Min(I, o) + g(w))
(f-8)(w) = Max(o, lw) + g(w) - I)
He) = 1-flw)

(f v g)(w) = Max(flw), g(w))

(f A 8)(@) = Min(Rw), g()) .

We proceed now to show that R|R can be viewed as an archimedean MV-algebra,

;
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so that algebraically speaking, conditional logic in a sense is a form of fuzzy logic. The
search for operations on R|R making R|R an MV-algebra is dictated by the operations
+, - of fuzzy sets or of corresponding operations on [0, I], and this using the Theorem 1
of Section 3.4.

In the three-valued logic setting, viewing u as "lying" between 0 and I, say
u=1/2, wecan treat u as a real number in [0, I]. In this vein, consider & and o
defined on [0, 1] by

xey=Min(l,x +Y),
xoy=Max(0,x+y-1).

The restrictions of © and o to {0,u,1 }2 yield values in {0, u, 1}, and hence

correspond to truth functions of operations on R|R. Solet y: {0, 1/2, 1}2 - {0, 2/2, 1}
be defined by

vi,D=Max(0,i+j-1).
We have

vl = {a, ),
w10y = (0, 0), ©, 112), AR, 0), A2, 112), 0, 1), I, 0)} .

Recall that, for a, b, ¢, de R with as<b, c<d, the pair (i,j) corresponds to
wi(a|b)wj(c|d), where

ab  ifi=0
wi(alb)= b’ ifi=172
ab(=a) if i=1

and
. 2 4
f'V' (RIR) R|R

is determined by

ffap,elay=| v

N wi(alb)wj(cld)l
(ijey (1)

v 3 wia|bwc|di.
ey (vl & }

Thus, here

v

.1, wialbwic|d) = ac,
Gievlian &

®

@
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and

GV wia|bwiLc|d
apevl vl b

=acVa’'bc’dva’bd’ vb'c’'dVb'd Ya'bcVac’'d
=acVb'd’ Va'b(c’dvd Veo)vc'dd' Va)
=acVb’'d’va’bVvc'da’b),

=acVb’d’ va’bvc'd,

noting that since ¢ <d, ¢’dvd’ Vc=1,and that a’bV (c’d)(a’b)’ = a’b V ¢’d).

Hence
fv((alb), (c|d)) =(aclacVa’bVvc'dvb’d)
= (a|b)e|d(® v d|1) .
Similarly, for Y, j) = Min(l, i + j), we have
vl = (ar, 12, ar, 1,4, 12, ¢, D, 0, 1, 1, 0),
vl = (o0,

V ;. wialbwlcld)=b'd" Vb'cVad’ Vacva’beVac'd
(ii)ey (1) g

=b'd" Vad Ve'dVe) Ve’ Va’'b)
=b'd’ Vavc@)
=avVeVb'd,

and

S A Y wi(alb)w](c|d)=aVch'd’ Va'be’'d
(ijey " (1)vy = (0)

=avVevb'd vVbd@a\vc)
=aVeVb'd vbd
= @|b)v_(c|d)v®’d’|I).

This suggests the following new operations on R|R:




v
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(a]b) @ (c|d) = (a|b) V (c|d) v (b’d’ |I),
(a]b) o (c|d) = (a|b)(c|d)b Vd|I).

Theorem 1. R|R, &, o, *, (O|1), (I|1)) is a semi-simple MV-algebra.

Proof. Wes verify the axioms of an MV-algebra. . <R[R,®, 0|I)> 1is a
commutative semi-group with identity (0|I). Indeed, the commutativity follows from the
symmetry in the definition of @ above; when ¢=0 and d=1,

@|B) vV O|D V| = (a|b) .

Similarly, <R|R, o, (}I)> is a commutative semi-group with identity (Z]I). Next, the

operation ~ is taken to be ’, and we have
@|b) e (@|b)’ = @|b)e@ |B) = @|b) V@ |B)VE D)= vE | D= |
(a]b) o (a’ |b) = (a|b)@’ |b)(®B| D) = (0|b)®]]) = O] D),
©|D’ = (1]D).
Next, always assuming that a< b, ¢ < d,
(@|b) e (c|d)’ = (@Vevb'd[avcVbdVb'd)

=(@’c’bva’c’dlavevbdVvb’'d’)
=((@’c’bVva’c’daVcvbdVvb'd)avevbdVb'd)

=(a’c’bdlaVcVbdvb'd)
= (@’|b) o (c’d) = (a]b)’ o (c|d)’;

((@]b) o (c]|d)’ = (acla’bV c'dVbdVb'd")
=@ vc'|a’bvc’dvc’dvbdyb'd’)
=@’ Ve')a'bVe'dVbdyb'd)a’bve'dvbdvb’d’)
=(@’bvc’dvb’d |a’bVvc'dVbdvb'd’)
=(a’|b)e (¢’ |d) = (a]b)” e (c|d)’,

noting that a< b and c<d imply that a’b” = b’ and c’d’ =d’.

.)
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It is easy that (a|b)’’ = (a]b), and is is readily checked that

(a|b) @ (a|b)’ o (c|d) = (a|b) V (c|d)
and
((@lb) @ (c’|d) o (c|d) = (a]b) A (c|d) .

Thus, V and A on R|R are precisely the derived operations. Also, <R|R, v, (0]1)> and
<R|R, A, (1]|I)> are vommutative semi-groups with identity. Finally, it can be checked
that

(a|b) o [(c|d) V (e|N] =[[(a]b) o (c|d)] V [(a]b) o (e|N]

(a]|b) e ((c]d) A (e]f) = [(a]|b) @ (c]|d)] A [(ab) & (e]/)].

For n2>2,
(alb) o ... ® (a|b)=(b" Va|l)
N —— .
n imes
Thus if
cld2 @’ vall),
then foralln 20,
@lb) e ... e (a|]b)<(cld),
\__\,.—__/
n times
and for a<b,
(a|b) o (b" Vall)= (a]d).
Hence

(a]b) o (c!d) = (a]b),
that is, R|R is archimedean. Indeed,
(a]b) o (c|d) = (a|b)(c|d)b V d|)
= (a|b)b Vv d|1) = (a|b),

since (a|b) < (b’ V a|l) < (c|d), using the criterion that since (a|b) < (c|d) if and only
if abscd andc’dsa’b. o
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Remarks. There are some similarities with fuzzy logic. .)
(i) The two additional operations @ and o on R|R are defined in terms of the
original logical operations V, A. The algebraic structure :
(RIR) %, 0, (')'r (0‘1), (III): <)
is somewhat similar to a quantum logic, since with respect to & and o , the operator ’

is an ortho-complementation, so that the law of excluded middle holds, and o is not
distributive over @. However, o is aot idempotent.

(ii) In fuzzy logic (for example, Zadeh, 1983), the basic connectives are defined in

terms of operations on the unit interval [0,11:V=max, A=min, “=1>. Asin
Belluce (1986), [0, I1 becomes an MV-algebra when one introduces new operations

@®,0,and  given by

xey=I1AK+y),
x0y=0Vx+y-I). .)

for x,ye [0,1). Inturn, A and ¥ are expressed in terms of © and o by

xAy=(xe)y) oy,
and
xXVy=xeXxoy.
(i) For u=1/2, Lukasiewicz's three-valued logic is a subalgebra of the
MV-algebra [0, I], that is, is a "bold” algebra of fuzzy sets. An alternative proof of
Theorem 1 is obtained by using Theorem 2 of Section 3.4, and making the easy

verification of the above fact.
Let A= {0, 1/2, 1}. Define, for x,y€ A, . \

xey=min(l,x +y),

xoy=max(0,x+y-1),

x=1-x. .)

Then
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xVy = max(x,y),
X Ay = min(x, y),

and the order relation < is the ordinary order relation on real numbers. A is a
MV-algebra. Moreover, it is archimedean. Indeed, for x € {0, 1/2, 1}, if x =0, then for
n 20, we have

0Oe --- 9 0
. P ~=050,1/2,1,
n times
with
000=001I2=001=0.
If x=1/2,then
12 @ -0 IR2=1,
n times
and
1201 =1/2.
If x=1,then

withlol=1 o
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CHAPTER 5

Lindley's discussions on the inadmissability of uncertainty measures in expert systems, via

: the scoring rule approach (Lindley, 1982), it is necessary to evoke conditional events
L (Goodman, Nguyen and Rogers, 1990).

By an uncertainty measure j on R|R, we mean amap M :R|R R, say, where R

denotes the set of real numbers. Now, for (a|b) € R|R, we have (a|b) = [ab, b’ V a], an

interval in R (see Section 2.3). Thus, an uncertainty measure g on R|R can be

‘ : CONDITIONAL EVENTS AND PROBABILITY
i The connection between logic and probability is apparent in automated reasoning
processes under uncertainty. A systematic study of the extension of probability logic to
M) the conditional case will be presented in Chapter 6. In this Chapter 5, we establish
- various basic properties of probability measures extended to the algebra of conditional
_ events as well as the justification of assigning conditional probabilities to conditional
{ events. We discuss the association of randomness to conditional events (such as random
sets, random conditional events, random conditional variables). Finally, a general concept

B of qualitative (or measure-free) conditional independence is introduced.

ri 5.1 Uncertainty measures on conditionals

‘ Itis an accepted thesis <hat uncertainty is essentially conditional, that is, the
{ uncertainty of an event is always conditioned upon some other events. At the numerical
x level, that is, when uncertainty is taken in a quantitative way, a natural domain for
‘ uncertainty measures is a conditional space R|R. For example, in order to rigorize

i derived from amap Vv:R -+ Ras follows.

1(a|b) = F(Aab), b’ V a),

where
F:RxR=R

is some given function. For example, if v =P, a probability measure on R, and

. F(x,y) = —2%

I +x-y

b

we have p(a|b) = P(a|b), provided P(b) > 0. (See also Dubois and Prade, 1991.) Itis
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obvious that, in this way, various uncertainty measures on R|R can be considered. In his
book, however, we are concerned only with uncertainty measures derived from probability
measures. For other types of uncertainty measures, see Dubois and Prade, (1991).
Specifically, we will proceed to justify conditional probability as a means to assign
uncertainty to conditional events. Note that, in the development of the theory of
measure-free conditioning (Chapter 2), the condition of compatibility with probability was
used in an essential way, so that it is possible to assign conditional probabilities to
conditional events in a consistent manner. We emphasize, however, the appearance of
conditional events as cosets of Boolean rings in our present work. The problem has been:
define mathematically objects (a|b) representing implicative propositions of the form "if
b, then 2 " (implicit or explicit) or " a on condition b " or "a given b” in such a way
that it is possible to quantify the strengths of these propositions by conditional
probabilities. Of course, if (a]b) is modeled as material implication b-a=b"Va ,
then one can quantify it by unconditional probability P(b +a) . The general problem in
reasoning under uncertainty in artificial intelligence is this. Given a knowledge base
consisting of uncertain conditional information, how does one combine these conditional
propositions and do inference? At the syntax level, one first needs to define or model "if
b, then a" by b3 a, say. Next, define appropriate connectives among such objects so that
one can combine b3 a with d = c through the use of these connectives. For example,
(b2 a)A(d=c). Atthe numerical quantification level, one chooses an uncertainty
measure 4 which can operate on the (b 2 a) and proceeds to compute, for example,
(= a)Ad=2c). When u(b =2 a) ischosen to be P(a]b), then b3 a hastobea
coset. The logical operations among cosets developed in Chapter 3 provide connectives
for conditional propositions. One combines severeal conditional propositions at the syntax
level, obtaining another coset, and then evaluates its conditional probability which is
considered as the measure of uncertainty of the combined evidence. Furthermore, it will
be shown in Chapter 6 that an entailment relation among conditional propositions can be
established so that deduction or inference can be carried out at the numerical level. If b3
a is modeled differently, for example, as in a "first-order conditional logic” of Delgrande
(1987), then the quantification measure p should be different than a conditional
probability operator. As an example, one can model b= a as b -+ a (material
implication) and use some appropriate non-addirive "measure” 1 on the ring R so that
u( - a) = p(alb) , where p(-|b) is defined to be a “conditional measure”. A typical
situation is when p is chosen to be a Dempster-Shafer belief function (see Sombé, 1990,
p- 405-406, or Pearl, 1990, p. 371-373). For example, let R be the power set of a finite
set Q. Let m:R~[0, 1] be such that

m(¢)=o: 2 m(3)=1
a<Q
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and

.U.:R-![O,].] with ﬂ(b)=2 m(a) .
a<b

For fixed b, define
m (@) = I m(x)

where the summation is over all x in R such that bx = a . Then the conditional belief
function p(-|b) is defined by
p@lp) =3 m(x).
x<a
It is easy to verify that
{x:x<b’va)}={x:xb=y<a).
Thus, p(alb) =p-a).

It is relevant here to describe the works of Rényi (1970) and Cox (1961). First, let
(2, £) be a measureable space. If P is a probabiiity measure on ¢, then the
A
associated conditional probability “operator” P is defined as follows. Lei

wp = {a:ae 4, P(a)> 0}.
Then define
A
P: Axwp-[0,1]
by
A
P(a, b) = P(a|b) = P(ab)/P(b) .
Here, }% is viewed as a "global” map, that is, with domain .£Xx Wp, rather than "locally,”
that is, rather than a collection of maps P(-|b), one for each b e wp - This is in line

with Rényi's concept of conditional probability spaces (Rényi, 1970). See later for details.
A
The map P has the following basic properties:

(i) Foreach bew,, ﬁ(-, b): A£-[0,1] is a non-negative and o-additive set
function (that is, a measure).

(ii) Forevery be wy, P(b, b) = I.

(iii) For b, ¢ € wp with bSc, one has P, c)>0,andif ae o, then
P(a, b) = P(ab, )P, ) .

The subset wp of has the following basic properties:
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Gv) If b]’bZEWP’ then bIVbzewP.

o2
(v) There exists a sequence bn €ewy,n2l,suchthat v bn =Q.
n=1

(vi) ¢ Wp -
Following Rényi, a subset 2C ., satisfying (iv), (v) and-(vi), is called a bunch.

The abstraction of the above is clear: an abstract conditional probability operator .
(or conditional probability ,operator or CPO for short) on (Q, £, 3), where BC f is

a bunch, is a map ?’ defined on A£x 2, satisfying (i), (i) and (ii).
Note that, from (i) and (ii), with b=c, we get

A A
P(a, b) = P(ab, b) .
By @), II;(-, b) is non-decreasing, so that

A A A
P(a, b) = P(ab, b)) <P(b,b) = 1.

Also, (3, b) = 0, since P(-, b) is 2 measure by (). Thus, the range of P is [0, I].
A
The main result of Rényi (Rényi, 1970, p. 40) is this. If P is a CPO on
(Q, /£ 2), then there exists a o-finite measure £ on .4, enique up to a positive

constant factor, such that:
Bcla:ae £,0< @) < +=},

and forall ae £ and be 2,
Pia, b) = plabp(p).
For u to characterize 1?’, we need to extend ?’ so that
L2={a:ae £,0<ya) < +=}.

This can be done as follows (Rényi, 1970, p. 43). Clearly,

E*={a:ae 4,0 < ua) < +=)

is a bunch. Note that 2 is the same for 2ll measures g in Rénvi's theorem above.
A
Wehave 2c 3°. If 22 8%,weextend P 1o £x 3° by

P(a, b) = plabyip(o) ,

for be @°- 2 and ae £. This extended operator f’ isaCPOon (Q, £ 2°).
é Therefore, there is no loss of generality to assume that any CPO P on Q £2) is
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characterized by g with 2= {a:ae 4 ,0< p@) < +«}. Thus, each CPO ?’ on
(Q, A4 ) is derived from some (o-finite) measure § on (Q, .4 . In particular, if p
is finite, that is, p(Q2) <+« , then Qe 3, io that Ig(-, ) is an ordinary probability
measure on (2, £), where for ae A4, P(a, ) is interpreted as the :.conditional
probability of the event a. ‘

As a final note on Rinyi's work, recall that Rényi's concept of conditional
probability spaces (Q, .4 B P) was motivated by the thesis mentioned at the beginning
of this section that "every probability is in reality a conditional probability." Thus, it is
intuitive to define CPO first, and then derive ordinary probability measures as special
cases. Conditional probability spaces are consistent with Kolmogorov's model of
probability spaces in the sense that they generalize Kolmogorov's probability spaces.
Note, however, that Kolmogorov defined probability measures first and then derived
conditional probability measures.

Next, we outline Cox's work (Cox, 1961) concerning a class of uncertainty measures
which can be transformed into conditional probability measures. In passing, we will
mention the analogy with Lindley's message on the inevitability of probability (Lindley,
1982).

Let R be a Boolcan ring of propositions. Taking the same thesis that numerical
uncertainty is conditional in nature, Cox proceeded to derive a calculus of uncertainty as
follows. ‘ .

Let g be a map on an appropriate domain in R X R. Cox(1961, pp. 18-22) proved
that if

(1) u(a, b) = flu(a’, b)) with f differentiable, and
(2) u(ab, ¢) = p:fa, o)ub, ac) ,

then u(-, b) is finitely additive and fix) =1 - x.
More generally, Cox replaced (2) by
(3) wuab, c) = F(u(a, c), u(b, ac)) with F(x,y) differentiable.

Then he showed that there exist functions g of one variable such that (1) and (2) are
satisfied when gt is replaced by gop. As a consequence, gou(-, b) is finitely additive.
In other words, the uncertainty measures pt satisfying (1) and (3) can be transformed into
(conditional) probabilities. Cox argued that there is no difference between p and gopu
since "if p(a|b) measures probability, so also does an arbitrary function of p(a|b)"
(Cox, 1961, p. 16). This is precisely what we should understand years later when Lindley
declared that "one cannot avoid probability” (Lindley, 1982).

Now, suppose P is a probability measure on (Q, .£), and let g(x) = X for some
r=1. Then goP = P" is no longer a probability measure. In fact, P is a belief function
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in the sense of Dempster-Shafer (Shafer, 1976). See also Section 5.3. Of course, P* can
be computed from P, but as a set function on £, P’ satisfies a weaker set of axioms
than that of a probability measure. In an abstract setting, that is, when belief functions are
defined from axioms, not all belief functions are functions of probability measures (see
Goodman, Nguyen and Rogers, 1990). In Lindley's sense, belief functions which cannot
be transformed into probability measures are "inadmissible."” More generally, if
U A4 IR+, say, is a set-function representing a quantification of uncertainty, then g is
"admissible" if there is some function g such that gop 1is a (finitely) additive
set-function. It is clear that gt need not be a probability measure. Thus, in the view of
Lindley, whenever an uncertainty measure u is considered, one should find some
function g such that gop is a probability, and then inferences should be based upon
goit and not upon p. As we have seen, a sufficient condition for the existence of such
g is the set of conditions (i) and (iii) in Cox's program. Note that the work of Lindley is
"conditional" in nature. Any g which cannot be transformed into probabilities should be
ruled out! Because of this important view on decision making in uncertain systems, we
present below an outline of Lindley's paper. For more details, see Goodman, Nguyen and
Rogers (1590).

Let R be a Boolean ring, viewed as a field of subsets of some set . Roughly
speaking, an uncertainty measure p: (R|R) =R is said to be "admissible” if there is a
function g such that gop is finitely additive. To make this statement precise, we need
to explain the concept of admissibility and the sense in which gopt is finitely additive.
The most general framework in which admissibility can be addressed is game theory.

Consider the following special class of games called uncerzainty games. These are
Jiples (A 7 AZ’ L) of the following form. A 1 is regarded as a space

AI = {(((aJIbI), v (anlbn)), ) : a; bl.e R,i=1,.,n,0eQ,n21)}

of all possible "moves"” or "pure strategies” of player 1. Fix, once and for all, two real
numbers o, < oz1 , and let

Ay=1{p:RIR) ~[0g, o)) .

Each element of A2 is a map assigning a number (describing the uncertainty) to each
conditional event. A, is regarded as the space of "moves” of player II. Consider now the
choice of loss function L. As in Lindley's paper, a function

filog eq) x (0,1, 1} 4R

is called score function if

9
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() foreach je (0,1}, f-,N: [0, ] =R is continuously differentiable, with a
unique global minimum in [og, o] at aj ,and

() fix,u) =0 forall xe [, o] .

We extend f to [og, oq]" % {0, u, IY* ,n21, as usual. For

-

A n
x, = (xI, e X, n) € [ag, 041",
A n
£, = (II, tn) e {0,u, 1}",

A

fGop 1,0 = (061 1), fix 1) € (0 ¥ e R n21). ‘
Similarly, pt is extended to (R|R)"® componentwise. For !
@), = (@;1bp, .. (a,|b) € RIR)", |
|

Halb), = (@ [b), ... na, |b ) e [0, ca]".

Let ¢(a|b) denote the generalized indicator function of (alb). A natural way to
combine individual "scores"

J{U‘l(ai‘bi) ’ ‘P(allbi)(a))) ) i= -I) 2: ey Iy

to obtain the total score is using addition on R. That is, take

n
Le (@D), o W)= § fua]b) , ¢a;]b))e).

i=1
The loss function Lf + depends on two functions, the score function f and the additive

aggregation function + .
In general, by an aggregation function, we mean a function

V{0 Yy )e R, n21) R

such that
1) ¥ is continuous differentiable in all of its arguments,
b) y is increasing in each of its arguments, and
c) t;/(On) =0,Yn21,where On denotes the zero vector in R".

The additive aggregation function is generated by ordinary addition on R. Taking y =+
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is equivalent to the sequence of functions g, n2 I, where

n
8, R R, gn(xl, ceer xn) = 2 ;.
i=1

Similarly, an aggregation function W can be identified with-the sequence v, n21,

where v is tpe restriction of Y to K. While the additive aggregation function is
symmetric, there is no a priori reason to impose such a condition on arbitrary aggregation
functions.

The game (A 7 A‘Z’ Lf, +) will be denoted by Gf, + It is simpler to formulate the
concept of admissibility of uncertainty measures using an eguivalent reduced form of
Gf, + In the expression of Lf, + the value of Lf, +((g | Q)n , @, W), for each fixed y, at

(a|b) n ) e A 7 depends on the "configuration” -
¥a|D), (@) = (pa;|b)@) , ... pa|b ) € {0, u, 1)".

Thus, Lf L(a IQ)n, -, 1) is constant on each element of the canonical partition n(a|b) "

of Q generated by (a|b), . Specifically,

ma|y), = (B;.i=12,.,2",
3n 8k
where each Bj isof the form A Dk , for
k=1

Dke {azbi ) aibi’ bx‘ ,i=1,..,n},

8}::1 or 0,a1=a,a0=a’.

(See Rényi, 1970, p. 12-15.) Thus, we can replace AI by
*
A;={@|b), B :(@|b), € RIR", Be nialb), , n21}.

L

£ 4 is modified to

* . *
Lf,+ .A] XAZ-»!R,
n
L; (alb), . B, w) = ) flutalb) , (a;|b)(BY
i=1

where (ailbl.)(B) = Wll-lbi)(w) for we B. The equivalent reduced form of Gf + is
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*

f’ = (Ali 2) f, )
The development above, as well as various concepts of admissibility with respect to G* +
which will be formulated below, are extended in a straightforward manner to an
arbitrary aggregation function v, replacing + by .
First, p € A, is (ordinary) admissible with respect to 'G;‘ , ffthereisno ve A,
such that
((alb) ,B,V)SL +((alb) » B, 1)

forall ((a IQ)n ,B) € A 7 with strict inequality holding for at least one ((a Ig)n , B).
For each fixed (g |g)n , a subgame of G;’ + is G;, +(g_ IQ) n where A2 is replaced
by
Az(_a_lg)n = {u :.{((ailbi) ti=1,..,n)~R}.

With respect o G, (alb), , 1€ Ayald), is admissible if there is no ve Ay(a|b),
such that

f+(\alb) B, v)S L@ld), . B, 1

forall Be n(a lll)n , with strict inequality holding for at leastone B. pe A; is said to
be uniformly admissible with respect to G* + if it is admissible with respect to

Gy (alb), forall (@|B), € RIR™ It is clear that uniform admissibiliy implies
ordinary admissibility. It turns out that under mild conditions, uniform admissibility of u

with respect to G;, + is equivalent to the existence of a function g such that the
restriction of gop to R is a finitely additive probability measure. (R is considered as a
subset of R|R, by identifying (a|Q) with a.)

As in Lindley (1982), let f'(x, j), j= 0, 1, denote the derivative of f(x,j) with
respect to x ; the above function g is

Py =—LEO_ xe o o)
fx0)-f(x1)

The following result was proved in Goodman, Nguyen and Rogers (1990): With respect to
X
the game G £+ with score function f such that Pf is increasing, pt is uniformly

admissible if and only if the restriction of Pfou to R is a finitely additive probability
measure. But if f is not a proper score function, that is if Pf(x) #x for some x, then it
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can be shown that no non-atomic probability g on R can be G; +-uniformly

admissible, so that we have to consider the concept of admissibility in a wide sense.
Specifically, 1 is said to be generally admissible if there is a game G; + such that p is

uniformly admissible with respect to that game. In this sense, any probability measure is
"admissible” by taking the score function f to be a proper score function, that is by
taking f such that Pf(x) =x, forall x.

Consider Dempster-Shafer belief functions (Shafer, 1976). For simplicity, consider
the case where Q is a finite set (see Section 5.3 for the general case). A belief function
Bel on the power set of £, denoted as P(Q), can be defined as follows.

Let m: 2(2) - [0, I] be such that

m@ =0, }: m@)=1;
ac Q)

Bel(b)=2 m(a) .
a<h

Note thatif p: L(Q) - [0, I1 issuch that u(Q) =1 andforallas Q,

Y1t 20,
b<a

then g is a belief function. (|b| denotes the cardinality of the set.b)
If we think of "sets” as "points”, then m plays the role of a probability mass

funcdon, and Bel is the "cumulative distribution function" of some random set. See
Secton 5.3 . Since Q is finite, we have

Bel(a) = PX e £(a)), asQ2,

where X 1is a random set, defined on some probability space (E, & P), and taking values
in 2(Q2) with "density" m, thatis

PX = a) = m(a).

Note that Bel(a) + Bel(a’) < 1.

We extend Bel from £(€2) to the conditional space 2(Q)| L(Q) as follows.
For a, be 2(Q), such that P(X <b) > 0, define Bel(a|b) = P(X <a|X <b). By the
nature of belief functions, we take [0, ] = [0, 1].

It is easy to construct Bel such that there exist a, be P(Q) with Bel(a) = Bel(b)

.)

9
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but Bel(a’) # Bel(b’). It can be shown that such a belief function is inadmissible. This
is due essentially to the fact that, for such belief functions, Bel(a’ |b) is not a function of
Bel(a|b).

Now observe that

Bel(ac|b) = P(X < ac|X<b)
= PXE<aXsc|Xsbh) -
= PE<a|XSbhPXSc|X<Sa, X<b)
=  Bel(a|b)Bel(c|ab).

Thus, there is a differentiable function A : [0, I1- [0, I] such that for all a, b < Q with
Bel(b) > 0, we have

Bel(a’ |b) = h(Bel(a|b)) .

Then by Cox's result, Bel is admissible. For example, if Bel = P where r21,and P
isa probability measure, then Bel is admissible.

As another example of non-additive uncertainty measures which are admissible, we
turn to fuzzy logics. For background, see Chapter 7. A t-conorm T is said to be
archimedean if T is continuous and Vxe (0, I), x < T(x,x). (See, for example,
Schweizer and Sklar, 1983). T(,y)=min(x+y ,1) 1is archimedean, while
T(x,y) = max(x ,y) isnot. T is an archimedean t-conorm if and only if there exists an
increasing, continuous function g (called the additive generator or generator of T) which
maps [0, 1]+ [0, +=] with g(0) = 0 and such that for x,y € [0, I],

*
T(x, y) = g (g(x) + gO)).
The pseudo-inverse g* of g isa function g*: [0, +=] -+ [0, I] defined by

gl if xe [0, g(1)]
1 ifx2gl)

g'x) =

(See Ling, 1965).

For example, for p21, Tp(x, y) = [min().p + yp , ])]I/p has generator gp(x) =P
and

2P i xe 10,1y
I ifx>1

* —
gp(x) =
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(noting that g (1) = I here). .)
Since each t-conorm T 1is associative and commutative, we can ex'end T to any
n-tuples, n > 1, as follows. T(x 1) =X, by convention, and for n 2 2,

T(x], xz, vosy .xn = T(x], T(xz, x3, eosy xn) ).

The representation of an archimedean ¢-conorm T becomes

n
%*
T(x} Xy wn X, ) =8 () 8(x)), n21.
i=1
For a be a r~conorm T , a T-possibility measure is amap p from 2(Q) to [0, I}
such that for a, b<SQ with ab=9, p(aVvb) = T(u(a) , ud)). Zadeh's possibility
measure corresponds to  T(x, y) = max(x ,y). The following result is from Goodman,
Nguyen and Rogers (1990).
Let Q be finite and p: P(Q) - [0, I}. Then g is admissible if and only if p is
T-possibility measure with T being an archimedean t-conorm with generator g such that
g)=1 and § g{@})< 1. o

Q
A T-possibility measure with T(x, y) = max(x ,y) is not admissible, but it can be

approximated by admissible ones. Indeed, if p is such that 2 p(w)<1,then for p= 1,

Q
VP(a) = Tp(u(a)), ® € a) is admissible since

) 8,(vp(@) = § W@P <1
Q Q

On the other hand, for each fixed n,
Tp(x 2 X een xn) -+ max(x,, Xy ens xn)
as p -« , uniformly in (xI, Xy wees xn) .
Thus, if p: P(Q)-(0, 11 is defined by

Ha) = max jw),
wea

for a<Q, then p is a T-possibility measure with T(x, y) = max(x , y), and .
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pa = lim vp(a) ,
» p—’+w
uniformly in a. .

Finally, note that while the concept of admissibility of uncertainty measures with
respect to a game is general, its equivalent form, namely that admissible uncertainty
measures have to be transforms of finitely additive probability measures, is valid only in
games with additive aggregation functions. Specifically, there are non-additive

aggregation functions y such that with respect to games wa , admissible uncertainty

measures need not be transformable to finitely additive probability measures. (For this
analysis, see again Goodman, Nguyen and Rogers, 1990).

We turn now to the justification of assigning conditional probabilities to conditional
events. From the standard viewpoint of conditional probabilities, not via conditional
events, the assignment of P(a|b) = P(ab)/P(b) to the conditional event (a|b) can be
justified through a functional equation approach of Aczel (1966, p. 319-324). See also the
discussions concemning Cox and Rényi's works presented earlier in this Section.

We present another justification based upon conditional event considerations
(Goodman, 1991). Let P be a probability measure on a Booleanring R. If A CR, then
P(A) is the image of A under P, thatis

PA) = {P@):ac A}.
In particular, for (a{b) € R|R, we have (a|b) C R, so that, formally,
P(a|b) = {P(x) : x € (a|b)} .

But (a|b) =[ab, b’ Vd],a closed interval in R (with the partial order relation < on
R). Thus,

P(a|b) = {P(x) : ab<x <D’ vV a} c [P(ab), P(b’ V a)],
a closed interval in the unit interval [0, I]. If P(ab) = P(b" V a), then P(b) =1 and
P(a|b) = {P(ab)} = P(ak) = P(ab)IP(b) .

If P(b"Va)-P(ab)=1,then P(b)=0, and conditional probability P(a|b) is not
defined. Thus, consider the case [s,f1c[0,1] with s<: and r-s#]. Let
h] :[0, 13- 10, I] be given by

hI(l) =i+ (l-As
and for n2 2,
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hn(l) =h I(hn- 1(3-)) . . ) .)
Then, for A€ [0, 1], lim hn(}l) exists and is equal to
n-e
-5
ST 1 +s-1

-

The proof goes as follows. Since h 1( ) is non-decreasing and JL p isthe (unique) fixed
point of hI( ),. we have that 2. Sl implies 2. Sh (2.), for n21 . Butif

A's ;S hn(l), then hn 1(?.) <h (1). 'I‘hus, the sequence (h (A), n21) is decreasing and
bounded from below by A (and from above by A). Hence Ilimh (l) h (l) exists.

n-ico

Similarly, if A< )“s p then hn(}{) <A s Vn 2 1, and hence hn(l) < hn + 1(2,). Thus,

ASh N ShMS..SA,

and hence lim hn(l) exists.
n-e

In any case, for A € [0, I], we have

h () =1limh (k) hI(lzmh 1().)) hI(h (A) .

n-e n-e

Therefore, h (A) =4, for Ae[0, I} o

S,t

The above procedure of assigning the value 7‘s ; 0 the sub-interval [s, ] ¢ [0, I]

can be extended to an arbitrary subset A of [0, I] by considering [inflA), sup(A4)), that
is, if s = infl4) and t = sup(A), then one assignsto A the value s(I +s-1).
Now, back to the case

={P(x),absx<sb’ va}c(0, 1],
with
inf(A) = P(ab) , sup(A) = P(b’ V a).
It is natural to assign to the conditionai event (a|b) the value
P(ab)
I+P(ab)-P(b'Va) .)
when P(ab) < P(b’ V @), which is the conditional probability P(ab)/P(b).
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5.2 Conditional probability evaluations

Let P be a probability measure on a Boolean ring K. Unlike the traditonal
approach to conditional probability measures, namely, viewing a quantity like P(a|b) as
a probability Pb(-) on R, for each fixed b e R, we are going to extend P glohally tc

the algebra of conditional events R|R, so that, if we denote this extension of P as P,
then i
P:R|IR—[0,1].

Note that for fixed be R with P(d) > &, the probability measure Pb(-) on R
defined by
Pb(a) = P(eb)IP(b) , Ya e R,

is "equivalent” to the probability measure Pb(-) on the Beolean {quotient) ring R|Rb’
where Pb(alb) = Pb(a). Indeed, first ?b(-) is well-defined on R|Rb’; next, with
respect to Boolean operations on R|Rb’ (that is, coset operations), Pb(-) is a probability

measure. Conversely, let P be a probability measure on R|Rb’. If we define
Pb(-) :R-1[0, 1] by Pb(a) = P(a|b), then obviously Pb(-) is a probability measure. In

P(a]b), (a|b) is an argument of the map P(-). Note that, although, the extended value
?(a]b) is taken to be P(a|b) = P(ab)/P(b), for P(b) > 0, in the usual sense, care should
be exercised upon P(-) as an extended map. In particular, with algebraic domain
@R|R, -, ¥, (-)"), P is not a probability measure. As we have seen, R|R is not a Boolean
ring. Moreover P is not additive. The situation is somewhat different from the
axiomatic setting for quantum probability theory (for example, Gudder, 1988) where the
domain is a o-additive class (generalizing the usual concept of a o-field): there, a form of
o-additivity is reasonable to retain. This is possible because not only the physical reality
supponts such a mathematical modeling, but because quantum probability measures are not
derived from classical probability measures the way P is derived from P.

Obviously, the advantage of viewing P as a global map on R|R is the fact that,
when the uncenainty is handled in a more quantitative way, one can combine conditional
evidence with different antecedents. From a pure mathematical vie'wpoint, one can view
R|R as an algebraic structure generalizing Boolean rings, say, a Stone algebra which does
contain an underlying Boolean ring, and consider maps on R|R such that their
restrictions to the underlying Boolean ring are probability measures. However, here we
are simply content with examining properties of P for probabilistic inference purposes.

First of all, extending the concept of disjointness of events, that is, eclements of R, to
R|R, we say that (a|b) and (c|d) are disjoint, if
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(alb) v (c|d) = (a|b) + (c|d) -
In this case, we have

P(@|B) ¥ (c]d) = P(@|) + (c|d)) = P(a + c|bd) = P(a|bd) + P(c|bd) .
Now )
@|b) v (c|d) = (a]|b) + (c|d)
implies
ab Vcd v bd = bd,
thatis ab V cd < bd, so that ab <d, cd < b, hence, abd = ab, bcd = cd. Thus

P(a|bd) + P(c|bd) = E@B) L Pld) 5 pa1py 4 piela).
P(a|b)  P(b|d)

Thus, P is not additive on R|R. However,
Theorem 1. P is monotone increasing on R|R. .}

Proof. Suppose (a|d) < (c|d). Then
(cld) = (ajb) v (c|d) =

(ab|b) V (cd|d) = (ab V cd|ab V cd V bd) .
Since abVedV bd<bV cd, we have

P(c|d) = P(ab V cd)/P(ab V cd V bd) 2 P(ab V cd)/P(b ¥ cd) .

Now,
abVcd=abV(ab) cd=ab+ (ab) cd2uab + b’cd
and
bvVed=>b+b'cd,
we have

P(ab V cd) 2 P(ab) + P(b’cd), P(b V cd) = P(b) + P(b’cd) . .)

Putting these together yields
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Pc|d) 2 P(ab) + P(b'cd).
P(b) + P(b’cd)

P(ab) +1t
P(b) + t

It is easy to see that is monotone increasing in 12 0, so that

P(c|d) = P(abyP() = P(a|B). ~ o

Remarks.

@) Since ab < (a]|b) < (b - a), we have
P(@b)<P@a|b)sPb-+a)=P®’' Va).

(ii) It is easy to check that

(aclb v d) < (a]b)-(c|d) < (ac|ba),

and
avVclbd)ys(@|b) Y (c|d) < (@Vc|ba),
so that
P(ac|b v d) < P((a]|b)-(c|d)) < P(ac|bd),
and

P(a Vv c|bd) < P((a|b) ¥ (c|d)) S P(a V c|bd) .

For combining conditional evidence, from a quantitative viewpoint, we present an
extension of Fréchet's bounds to the conditionai case. First, we recall the unconditional
case. Let P be a probability measure on R. Thenforany a,be R,

P(ab) S min{P(a), P(D)} -
In fact, for a<b,
P(ab) = min{P(a), P(B)} ,
so that min{P(a), P(b)} is the best possible upper bound for P(ab). Similarly,
P(a Vv b) S min{1, P(a) + P(b)},

and equality is achieved when ab = 0. Now

P(@a’ vb’) € min{l, P(a’) + P(b’) = min{], 2 - P(a) - P(b)} ,
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Pab)=1-P(@ vb’)2
1 - min{1, 2 - P(a) - P(b)} = max{0, P(a) + P(b) - 1},

which is the best possible lower bound for P(ab). By the same token, the best possible
lower bound for P(e V b) is

-

1 - min{P(a"), P(b")} = max{P(a), P(B)}-

More generally, for 722, we have

n

max{0, 2 P(ai) -n-D} < P(_K ai) < min{P(ai), i=1,..,n},
i=1 i=I
and
n n
max{P@),i =1, ., n} < P(_!Iai) < min(1, }: P(a)} -
= i=1
Now, let ofa g e an) be a Boolean function of n variables. Write ¢ in its
normal disjunctive form
N A L
o{a 11 G5 s an) = _V _v q:(zl, igs e zn)al a, ..a.,
zI—O,I zn-O,I

with the usual convention ao =a’, aI = a. It is easy to see that one can determine two
functions

. n
UtP’Ltp'[o' 11" =00 1]

such that
LQ(P (al): weey P (an)) s P [9’(01: e=*y an)] S UQ(P (al)t i ] P (an» »

where an =1-U e with ¢’(a r - an) = [<p(al, —eer an)]'.

These results were also obtained by Hailperin (1965, 1984) using the technique of
linear programming. This latter technique provides a feasible procedure for computing the
bounds L and U_ of P[¢], and can be adapted to computaiional procedures in
probability logic (Nilsson, 1986). To find g o let o = P(ai), i=12,..,n. Then
frora the normal disjunciive form of Xa o e an) , we have

®

¢
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1 1
ST CTAN ) R R SRS 10):.(FA )
11=0 ln=0
where .
i,y
Bip i) = Plala? a . -

Next, foreach j=1,..,n,

i, i i, i
g=_ N o VoV V all...aj{fajaj-_’k';]...an"
11=0;1 lj_1=0:1 lj+1=0.~1 ln=0,1

so that
1 1 1
@ g= 3.1 1

ﬁ(i], ceoy ij_], 1, ij+1, vesy in) .
0

I o1

i i,
also, since the a 1] an" form a partition of I (the greatest element of R), we have

1 1

(**) Y o ) Bipasi)=1.
=0 i =0

Thus the least upper bound of Plga 1o @ n)l is obtained by maximizing
Plo(a 2 an)], as a function of the variables f( 1w in), subject to the constraints (¥),
(**yand L@ I in) 20 (the a‘.’s are constants). Note that since the ¢(i I in)'s are
either 0 or 1 (elements of R), the lincar constraints (*) and (¥*) can be put in a matrix
form with a "design matrix" whose entries are 0's and I's.

The linear programming technique above for actually determining lower and vpper
bounds L , U _ of P[p] for any hoolean expression ¢ can be adapted to a similar
situation in probabil.ty logic (Nilssor, 1986). Since Chapter 6 will deal with conditional
probability logic, it .s relevant here to say a few words about basic aspects of probability
logic (see also, Rescher, 1965 and Hailperin, 1984). We follow Nilsson (1986).

Although the collection of sentences of interest forms a Boolean ring R, and hence,
onc can talk about probability measvres P oa it in an abstract setting, in practice, only a
small set of sentences is to be cousidered, for example, evidence in an expert system. The
problem of probabilistic entailmenc i3 this. Suppose we have a set of sentences Sp
j=1,..,n with known probabilities P(si) , i=1, ., n; compute P(r), for some
sentence r of intergst, in teras of the P(si)'s. ¥irst, sentences are taken to be
“propositions,” tnat is, each sentence is either true or false only. However, the uncertainty
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: emerges since we do not know whether a given sentence is true or false, based on e)
1 available information. By Stone's representation theorem, one can view each sentence s
e as a subset of a "sample space" or universe £ on which probability measures are defired.
3‘, i In this setting, a "possible world” is simply an element of Q. Thus, for each s c £, there
are two sets of possble worlds s and s’:in s, s is true; andin s/, s is false. One can
also consider the indicator function of s:. 5 Q- {0, 1} ;. and as in statistical theory,
before performing an experiment, it is meaningful to consider the chance that s will be
['7- "realized." In expert systems, for example, a sentence {evidence) s is to be considered,
and it is desired to know its probability of being true. This is the common interpretation
for probabilities of sentences. On the other hand, inference mechanisms in, say, expernt
U systems, require some form of logical deduction to reach decisions. In the presence of
uncertainty (about the trueness and falseness of sentences), it is reasonable to invent a
multi-valued logic in which the (probabilistic) truth value of a sentence s is taken to be
its probability P(s) of being true. This logic is termed probability logic. Its base space
remains a Boolean ring as in classical two-valued logic, while its truth evaluations range

ros——

ool

over the unit interval [0, I]. Its difference with the simplest form of fuzzy logic lies in its

*
S ]

non-truth functional calculus (derived from axioms of probability measures) as well as in
the interpretation of the meaning of degrees of beliefs. ’
" Consider a finite collection of sentences, that is n subsets a 2 Gy of Q (or

equivalently, n elements of a Boolean ring R). These sets generate a finite partition of

. i i
(\- Q, namely {all...ann} where ije (0,1}, j=1,.,n (with the usual convention

a® = a’, a! = a, as before).

1_. In logical terms, these sentences generate 1 (S 2™ sets of possible worlds. In each
of these sets of possible worlds, one can specify the true/false values of any Boolean
L. expression of the variables a; (that is, component sentences) using its normal disjunctive
form as usual. For example, two sentences a, b generate four sets of possible worlds,
H namely ab, ab’, a’b, a’b’. A possible world is a state of nature, or, in the “sample
, space" setting an element e . However, unlike statistics, one cannot "perform an
- experiment” to get the "outcome" . Consider three Boolean expressions f ](a, b) =a,
f2(a, b)=a-b=a" Vb, f3(_a, b) = b. A "truth matrix" for these expressions is obtained
0 by specifying their truth values on each of the above sets of possible worlds (in the order
.. written)
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"1 1 0 0 I
M=|1 0 1 1 |f
i1 0 1 0 5.
ab ab’ a’b a’b’
In terms of normal disjunctive forms,
a=abvab’,
a’ Vb=abva'bva'b’,

b=abVa’t,
so that

P(a) = P(ab) + P(a’h),
P(a’ V b) = P(ab) + P(a’b) + P(a’b"),

P(b) = P(ab) + P(a’b) .
If we set

X = P(ab), x,= P(ab’), X3 = P(a’b), Xy= P(@’b’)
and

Ly = P(a), T, = P(a’ vV b), gy = P,

then 7 =MX , where

Ly 'xl i
*3
| 74

The equation 7 =MX represents a "consistent” condition for the assignments xl.'s. To
include the condition x jFXyF Xy e Xy = 1 (besides X; 2 0), one usually adds the row
(1, 1,1, 1) tothe top of M and modify 7 to

The general probabilistic entailment problem is this. Given a; and ; =P(ai),

i=1,.. n and a sentence of interest b. In view of the above procedure detailed in the
example, one first needs to include b into the collection of the ai's, so that a partition of
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i i
Q is formed by the a 11 wa nnbk, ij, ke {0, 1}. Label these sets in some order, say c,,

7
j=1, .., m©2"7), and set x;= P(c). Let M bethe (n+2)by m matrix (with firs

row consisting of all I's) representing the true/false values of the a/s and b in the cj's,
let

and let

X=

*m

Formally, to solve for P(b) , delete the last row of M (corresponding to true/false values
Mn+2j ,j=1,..,m of b in the cj’s), and P(b) in m. Then solve for X in the
equation MX = 7. If a solution X is found, then

m

P() = 2 My .2i%-
j=1

To obtain bounds for P(b), a similar procedure as in Hailperin's work is used.

In the following, we will first determine best upper and lower bounds for basic
connective A and V in the conditional case, then proceed to outline a generalization of
Nilsson's computational procedure to a conditional setting. Specifically, we are seeking
best lower and upper bounds for P((a|b)-(c|d)) and P((a|b) V (c|d)). First, observe
that

(a|b)-(c|ld) < (a|b), (c|d).
Thus

P((a|b)-(c|d)) s minP’ . \b), P(c|d)),

by Theorem 1, and equality is achieved, say, when (a|b) < (c|d). Next,

(a|b) v (c|d) = (ab|b) V (cd|d) = (ab V cd|ab V cd V bd) ,

so that

9
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L'; P((alb)vic|dy = _F(abved) o
P(abVcdvbad)
P(abvcd) < P(ab)+P(cd) =P(a]b) +P(c|d) ]
P(bd) P(bd) P(d|b) P(b|d)
Hence

. Pa|B) V (c|d)) < min(1,F(812)  P(cld)
1 : P/d[b) P(b[d)

The fact that this is the best upper bound follows from abcd =0 and ab Vcd < bd

and P(c|d) alone. Obviously, when b=d =1, it reduces to the bound in the

(, Note that, since P is not additive on R|R, this upper bound is not a function of P(a|b)
j ‘ unconditional case. However, as in the unconditional case, we still have

((a]b) v (c]d)’ = (a|b)"-(e|d)’ = (@’ |b)-(c”|d),
(alb)-(c|d)’ =@ |B) V(c’|d)

w:w-:]

and

———
ad

P(a|b)’ = P(a’|b) = 1-P(alb),

so that the lower bounds for P((a|b)-(c|d)) and P((a|b)V (c|d)) can be obtained from
“ the upper bounds of P((a”|b) V (¢’ |d)) and P((a’|b)-(c’|d)), respectively as

o o ot

]’P(a'|b) + P(c’|d)

P((a|b)-(c|d)) 2 I - min{ } = max(0, s + ¢ - 1},

; P(blb)  P(b|d)
_1
where
s = [P(a|b) + P(d|b) - 1/P@|d),
t=[P(c|d) + P(b|d) - 1VP(bld) ,
and
- P((alb) vV (c|d)) = 1-min{P(a’|b), P(c’|d)} = max{P(a|b), P(c|d)} .
Turning to computational procedures in the conditional case, we first observe that a
condidonal event (a|b) (with a < b) generates a partition of I consisting of the three
‘ sets ab, a’b, and b’. (since a<b implies ab’ =0 .and a’b’ = b’). Also,

(*) P(a|b) = P(ab) + P(a|b)P(b") .
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To put it differently,
P(ab)
P(alb)=[1 0 P(a|b)] | P(a’b)
P(b’)
Thus, consistent with three-valued logic framework, for a|b, we assign the truth value I

on the set of possible worlds ab, the value 0 on a’b and the value P(a]b) on b’.

See Chapter 7. ‘More generally, consider n conditional events (ailbi)’ z‘= 1,2,.
i Jn
The associated partition of I consists of m sets of possible worlds aII "b 11 b

with m < 22", Label these possible worlds as ¢ j=12, .., m. The "truth values" of
each (a;b;) in these ¢; are determined as follows.

J
0 lf chaibi
P(a;lb) ¥ c;sb] .

Thus, if we let the "truth values” matrix M = [t(a |b 3, © P(a lb) x P(cj),

[ 7
r=|: |,
-xn
and
*1
X=1- ‘
i-xm
then 7 =MX.

Now if (c|{d) is a conditional event of interest, and it is desired to compute or
approximate P(c|d) in terms of the 7ri's (conditional beliefs), that is, to see how strong
(c|d) is entailed probabilistically by these conditional beliefs, one proceeds exactly as in

the unconditional case. Specifically, add (cld) to the (a ]b)'s and consider the

J i; J
collection of sets of possible worlds a; ] rszJ b n ka'l (of m elements,

m< 22 ('H'])). Label these elements as cj, J=1,..,m Add the top row consisting of
all I's to M,and I tothetoprow of & Solve for X (where xj = P(cj)) in

n=MX.
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Then P(c|d)=NX where N isa IXm row vector whose entries are truth values of
(c|d) on the cj's.

5.3 Random conditional objects
1. Conditional random variables

Conceptually, random variables are well-behaved numericdl (scalar or vector-valued)
functions whose domain is some initial conceptualized space reflecting the problem of
interest. Mathematically, one begins with a probability space (Q, /6,P) and two

random variables say X : Q - K™ Y: QR The relevant joint random variable here is

(X,Y):Q—»!Rm'*'n where, for any @€ £,

X, () = X(w), Y(@)) .

Then, X and Y can be considered marginal random variables relative to (X, Y), with all
three inducing probability spaces

®", B, Pox’l), @, B, Porl), @™, B, Poty, 1Y),
where Bk is the real Borel field of subsets over k-dimensional Euclidean space le For
any sets aIeBm,azeB",and

x1.p". 4,

y!:B" s 8,
and

, Y)'] . gnn A,
we have
Po, YD), xa,) = P @ n ey
Pox)a) = P& (ap) = Polx, 1), xBY,

and

(PovI)(ay) = PO (@) = ok, 1) @ x a))

Note, also, using the notation b = (b 17 o b’) € (Bm +n)r and obvious notation to

indicate arbitrary combinations of basic operators, that any Boolean operator over ) S
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is preserved by (X, Y)"] with corresponding evaluation

(P, 1 Dy(combin, u, *; ) = Plcomb(n, v, *; &%, Ty @),

where
& vlw =@ nie) ..anleyea.

Consider again a, ¢ B", with pa! (a,)>0. Then one defines the single
conditional random variable

&Y @y : Y (a) - 8"
by
&|¥ a0 =X, oY@y

That is, (X|¥X(a,)) is the restriction of X to ¥(a,). Tnram, (%]7(a,) induces the
(conditional) probability space (Z(*”! (a,), Y0y PX|¥ia,) oM it TEnge, where one
jay " X|Y;a,

assumes
X a,) = (@) : 0¢ Y (a,)) = (X(@) : V(@) € a,) € B”
and
 B¥ia, = x@0l@) nB" = X @) nb:be B,
Now, for any a; € B™ and hence for any b =X(Y'I(a2))ﬂa] € J&ly,a ,
a
arley’ o =x1e nrle)
=x1@p ¥y = nl@xap.
Hence,
Pryry. B = PolX|Y L@ ) )P (a)
X|Y.a, 2 2
= P&l ap n Y @pyp @y
= Po(x, ¥y (a; x a,0P(r (@)
= Pl apiriia,). )

Our approach here of viewing a single-conditional random variable (X ]YI (@) as

.)

-




e
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the restricdon of X to the fixed event Y'] (¢) is the same as Rényi's (1970, p. 72)
random variable (defined on a conditional probability space) with respect to the condition

y! (@). The double conditional random variable is given by (XlY’I ¢G): QXY" R,
where

Q

XY = (Y](az) X {az}) ’

(V)
{(a,:0,eB" Py (a,))>0)

and for any ay € B" with PQY” {(az)) >0;0¢ Y’I (az),

&[T (ay)) = &Y (@, ).
Hence, for any a,¢€ B" with PY ](az)) >0 and forany a 1€ Bm,
&Y Nl @, ) = @y enle). @

The extension of single and double conditional random variables to include sets a,

of probability measure zero in B"™ can be accomplished through use of the
Radon-Nikodym Theorem. Given all of the above standard development of conditional
iandom variables, it is natural to inquire whether a direct connection can be established
between these entities and an appropriately constructed random mechanism over the class

of all conditional events. Forany ae B™, be B", define the conditional event
(a|b) = (@x b|R" x b),
and define the Kronecker form §: QZ -+ Q [{0}

9 ifw,#w
_ 1772
S(w,wz)_{wl if o,=0,.
Similarly, for any W, @, € Q and se ", e RY,
(0;]@y) = ({(07, @)} Q% {@,}),

]9 = ({(s, D) B x (1)),

with

@RS = (5] :se R, 1 RY},

(B"|B™ = ((a|b):ae B™, be B},
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Q|Q) = {(colla)z) 10y, 0y € Q},

(£ A)={(c]d:c,de £} .

Use also the convention for equal exponents

(BmxBnlB'mxB") = {(a]|b): a,be B"xB%.
Then define the random conditional event mapping (X|Y) : (Q|Q) - ®" ]lR") by
XN(@; @) = (&, NE@;, )K" xY(@,)) .

It follows, by a slight abuse of notation, omitting the {0} term, that, extending via

functional images, (X|¥) to X|¥):(A]|£)-B"|B") , one obtains for any
c,de A,

X[D(e|d) = (&, DB, ) : 0 € ¢, 0y € dF[{@® x Y(@,)) : coé e d}) .)
= (X, Ncn d)|R" xY(d),
where
X, N)cnd) = {X(a), Y() : 0e cnd},
and

Y(d)={Y(0):Y(w):0ed).
Next, consider the inverse mapping for (X|Y), atany (a 1 |a2) e (B™|B™).
&I lap) = (cld): . de £ and K|V)(c]d) = (K, N D (g;1a,)) )
={(c|d):c,de £ and cd= (X, Y)'](al, a,),d= Y'](az)}

=(c:ce A ad oV (@) =X (@) n Y (@)} ¥ ()

= & @p|riemriay

= tapiriay. ® 9
Comparing (1)-(3) shows that ‘

P e = PN Y )
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= Po(x| ¥ (@) )a))
= Po|Y 1) (), (a,)), @,

so that in a nawral sense (X|Y) and X IY)"’?]; can be considered the equivalent
conditional event random mechanism corresponding to double conditional random variable

& |Y’1 (+)). Moreover, using (3) and the operation preserving property of x1 and v!
it readily follows that if f: (B™ an)r -+ (B™|B" is any r-ary extended Boolean function,
then X |Y)'1 preserves f, that is,

&Iy lor = foxiny! : )

analogous to the preserving properties of X, Y, (X, ¥) relative to unconditional operators.
In summary, analogous to how the double conditional random variable

&Yy vie) -7

and its operator inverse (XlYI(-))'I :B™ 4 6 determine from the probability space
(Q, 4 P) the induced probability spaces

GO, gy Pyy. )
one gets that rargdom conditional event mapping
X|1) : (QQ) + @R -+ (A 4
determines from probability space (£, .4 P) the induced "conditional probability” space
@™ W™, 8™ x B"|B™ x BY), PR|n™),

where P is the conditional probability extension of P. That is, P : (8] 4 - [0, I] is
defined for any ¢,de £, and hence (c|d) e .4 by

P((c|d) = P(cid) = P(c n d)/P(d) ,

provided P(d) > 0. The chief relations between, and evaluations for, double conditional
random variables and random conditional events are given in equations (3) and (4).

II. Random sets

It now becomes clear in the literature of uncertainty in Al that the mathematical
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concept of a random set is the cornerstone for evidential reasoning (for example, Hestir et
al, 1990). For background on random sets see for example Matheron (1975), Goodman
and Nguyen (1985). Below, we will illustrate, through an example, the use of
(measure-free) conditional events and their algebraic structure in a problem of combining
conditional evidence. For more details, see Nguyen and Rogers (1990).

In a given problem, we make the basic assumption that our knowledge at each state
is expressed by a probability measure. When new evidence is obtained, this is to be
"updated” by some "combining.” We interpret an evideace as a realized event supplied by
some "test” which might be merely the opinion of an expert. This lack of precision in
evidence suggests locking at a less precise formulation of randomness, namely random
sets. Roughly speaking, a random set S is a measurable function from (2, 4 to the
power set of some set ©, equipped with appropriate o-field.

For ease of reference, we present below basic aspects of random sets in the context
of Dempster-Shafer theory of belief functions. For more details see Hestir, Nguyen and
Rogers (1990). A random set S on a space © is described as follows.

Let € be a subset of the power set 2(0), o(¥) acfieldon % and (Q, £, P)
a probability space. A random set with valuesin € isamap § from Q to ¥ whichis
J6-0( ¥)-measurable. Briefly, 2 randem set § on © is a triple (¥, o( %), @), where

o=ps.
For a given O, there are two general ways to specify the objects making up a
rardom set.

4) f €= P(O), then o(¥) is constructed as follows. Let I be the collection of
all finite subsets of ©. For i,je G, [i,j] = {xe P(@®):i<x<j}, where < derotes set
inclusion. Let #={[i,j’]:i,je 9} . Then o(¥) is taken to be the c-field generated
by 4, denoted as o(.4). Each probability measure Q on o(.4) determines a random
set with valuesin 2(©).

(i) If © is a topological space, then the topological structure of © can be taken
into account. For example, consider the case © =R, the real line, or more generally, ©
a locally compact space. Let 5 J ¢ be the classes of closed, compact, and open
subsets of R, respectively. If &= &, that is, if we are concerned with closed random
sets, then & can be given a topology 7 using the open subbase

{Fe :FnK=0 for Ke %)
and

{Fe 5:FnG=+0,for Ge y}.

Then of €) = o(%) is the Borel o-field on & in this topology. Each probability measure

®

()
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on (%, o(7)) determines a closed random set.

As in the case of random vectors, one can associate with each random set S a
generalized distribution function (GDF) characterizing S. In case (i), giver by the two
spaces (Q, £P) and (£(O),0(4),0), and the map S: Q-+ L(O), let
I ’'={j :je F). Define

-

Fg:9'a00,1]
by
Fo(i"y=P(S<j’) =08, j’].

It can be shown that

Fo(©) =F0")=Q(6,9') = 0(P®)) = 1,
andfor {,je G

|]
QWiD= ) J DFLGVH),

=0 rei
where |i] denotes the cardinality of i, and
ip={r:rsi 1l =0} .

Thus, in this case, a funcion F: § ’ = [0, I] uniquely determines a GDF if and only if
F(©) =1 andforall i,je
li]
Y DY FGvizo.

a=0 tei

For example, if © is finite, then &’ = 5= 2(O). Let

fa= ¥ nloblrg) 0.
b<a

By the Mobius inversion formula, we get

Fla)= ) f),
bsa

so that f is a "density function” on $P(0). Define Q on 2 £(O) by
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n
oda;, ..a )= ) fla).
i=1
The probability space (P(0), LLP(0), Q) specifies arandomset § on ©.

In case (i), given by the spaces (X, .6, P) and (5, o(r),Q), and the map
$:Q- &, thedomainof aGDF F willbe £’ ={K':Ke F). Let T: %-(0,1],
and T(K)=1-F(K’). As an application of Choquet's theorem (Matheron, 1975, p.
30-35), a function F on K’ uniquely determines a GDF if and only if

M 7@ =0,

(2) if the sequence Kn in J% decreasesto K in %, then T(Kn) - T(K),

(3) foral n=1, 2l K, KI' - Kn in /¥, the following functions are
non-negative:

0,(K; Kp) = TK VK) - TE®),

{pn(K; KI! ==y Kn) = Qn_I(K; K]. ~erp Kn'.l) - QH-I(K V Kn; K], -sey Kn_]) -

Such an F uniquely determines a probability measure Q on (&, 6{(%)) such that for ali
Ke %, FK’)= 06, K’}).

When © is finite, a belief funcion Bel on © is amap Bel: $(0)-1[0, I]
defined by

Bel(a) = 2 m(a),
b<a

where the basic probability assignment function m satisfies: m(@) = 0 and

2 m(b) = L.
b £(O)

Thus, a belief funcrion is nothing more than 2 GDF of a rendom set § such that
P(S = ©) = 0. (Sce Shafer, 1990.) Belief functions on finite seis can be characterized by
various set funciions. Indeed, let S be 2 non-empty r2rdom set on a finite set ©. If

Qs(a) =P(CZSS) »
then

A

}
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Q5@ = ) mg(b) .
ash

Also, by the Mobius inversion formulae (See Rota, 1964, or Aigner, 1979.),

m@ = § 01*PlBagey = ¥ !l
b<a ask

Finally,
PLS(a) =PSna#8)=1-PSna=0)
=]-PS<sa)=1 -BeIS(a').

It is interesting to note that the commonrality QS can be viewed as the Fourier transform
of mg (see Thoma, 1989, 1991). In other words, QS is the "characteristic function” of
S. Of course, the harmonic analysis involved is over a semi-group structure.

The interpretation of belief functions in terms of random sets allows the rigorous
formulation of the problem of combining evidence, where each piece of evidence is
assumed to be represented by a belief function. Specifically, using the concept of
conditional everts, two (non-empty) random sets S ] and S2 can be combined into one
nos-empty random set (S N S2 |S 70N S2 #0).

In the following, the range of S will be simply a finite Boolean ring R or a finite
subset of an arbitrary Boolean ring R. In this case, S is completely characterized by its
generalized distribution fuuction (GDF) F ¢ called in the literature a belief function
(Shafer, 1976). F S(a) = P(S < a), where P is a probability on (Q, ).

A typical situation in the problem of upcating of knowledge is the following. The
measure Py on the range of the variable of interest is postulated but only partial
information about Py is available. This is the Bayesian case of incomplete prior
information. Specifically, consider the case where P 0 is unknown, but we are given
(say. by an expert) that a, b, ce R, a and ¢ are Pgp-independent given ¢, that
Py(c|b) = a, Po(c|b) = B. The question is: whai can be said about the values Po(r|b)
for the other r e R? Consider the (Boolean) quotient ring R|Rb’. We extract the prior
information as foilows.

Let X, ¥ be random sets with values in the power set of R|Rb’, wih ranges
{(@]b), @’ |b)}, {(c|b), (¢’ |b)}, respeciively. Also, (note that P json (2, J§),

PX =(a|b)=0a=1-PX=(a"|b)),
nd

PY=1:10))=B=1-PY =(c’|b).
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We combine X and Y through the random set Z with range
{(ac|b), (ac’ |b), (@’c|b), (a’c” |B)),
with probabilities (in view of conditional independence assumption)
of, all - B) (1 - @B, (I - o)1 - B,
respectively. See Section 5.4 for the concept of qualitative conditional independence.

The GDF of Z is the map FZ:Rle' — [0, I1 defined by

Fr|b) = Y Pgag|b),
(afilb)ﬁ(’lb)
where PZ=PZ'] as usual, and where a; is a or a’,and ¢; is ¢ or ¢’. In terms of

the order relation £ among conditional events, (alz:ilb) <(r|b) if and only if alc‘b zr.
Forall (r|b) e R|RD’,

Fz(rlb) S PyR|D) .
Replacing (r|b) by (r|b)” = (r"|b) in this inequality, yields
Po(r|b)<1 - FZ(R' |5).

Based on the available evidence, for r € R, an interval approximation for Py(r|b) is
[Fz(r|b), I- Fz(r' | D).

5.4 Qualitative conditional independence

Qualitative independence (or Q-independence for short), or measure-free or
algebraic independence of ordinary events is a well-known concept (for example, Rényi,
1970). It is not simply for academic interest that the above concept should be extended to
conditional events. In fact our motivation for considering Q-independence comes from the
problem of fast computations in inference networks of expert systems. For example, in
some models of medical diagnosis, the variables of interest are represented as nodes in a
graph, the causal relationships among these variables are represented by (directed) edges
of the graph and the strengths of such relationships are usually quantified by an
uncertainty measure (Bayesian probability, Dempster-Shafer belief function, Zadeh
possibility measure). In Al activities, there is no general agreement on the choice of such
uncertainty measures (see for example, Henkind and Harrison, 1988). Thus the design of

@
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inference networks (or influence diagrams) should be done without reference to the
uncertainty measure used. Not only some sort of "independence” assumption generally
simplifies the calculations within the knowledge representation, but by the very nature of
many application domains, neighboring interactions among variables exhibit some form of
conditional independence. This is typically the case of Markov random fields (for
example, Lauritzen and Spiegelhalter, 1988). i

First, we give a brief historical background. The concept of Q-independence of
events was treated in some detail in Rényi (1970). With our notation conceming a
Boolean ring R, two elements g and b of R are said to be Q-independent if and only
if ab, ab’,a’b, a’b’ are allnot 0 (implying also that a, a’, b, b’ are all not 0). One
possible interpretation is clear: viewing elements of R as events, if, for example,
a’b=0,then a<b so that when b is "realized,” @ is also realized, it follows that a
and b cannot be "independent." It is easy to check that P-independence implies
Q-independence: P(ab) = P(a)P(b) > 0 implies ab # 0, and the rest follow by the use of
complements. This concept of Q-independence of non-zero a and b can be
reformulated as follows.

Let m(a@)={a,a’}, n(b) ={b, b’} be partitions of I. Then a and b are
Q-independent if and only if for all o € n(a), and all B e n(b), one has off # 0. If we fix
a and b through their indicator function I a and I b then the following equivalent
definition can be used to extend the concept of Q-independence to variables. The o-field
generated by "a is o(]a) = {0, 1, a, a’}; similarly, o(ab) ={0,1,b,b"}). Then a and
b are Q-independent if and only if for all ae o(l a)\[ 0}, and all Be ol b)\[O}, one has
af # 0.

Next, to be concrete, let R be a o-field of subsets of some set . Let X and Y

- be measurable functions, defined on (€2, R), with countable ranges in the real line R. Let

the countable partiions (with no empty subsets) generated by X and Y be
correspondingly,

7®) = {a,) . (D) = (b,) .
Then X and Y are said to be Q-independent if and only if m(X) and =(Y) are

O-independent in the sense that for all o ¢ n(X), B e n(Y), one has off # @. Note that the
o-field generated by X is

o‘(X) = {UalI(_:X(Q)},
iel

where a; = X'J(D for ieX(Q), and I could be @. From this, X and Y arc
(-independent if and only if for all ae o(X)M3}, B e o(¥)\{8], one has off # 2.
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174 Conditional events and probability

Recently, Shafer et al (1987), also motivated by the study of inference networks in
expert systems, defined Q-conditional independence for finite partitions, or equivalently,
for variables with finite ranges. They did not consider the concept of Q-conditional
independence for events. As far as we know, Q-independence of "continuous” variables
has not been discussed in the literature; also, Q-conditional independence was not
addressed in Rényi (1970). Below, we follow the recent work of Nguyen and Rogers
(1990) to present a comprehensive discussion of all the above mentioned notions.

Back to the abstract setting, let R(V, A, *, 0, 1) be a Boolean ring.

Definition 1.
(i) Let A and B be two subsets of R consisting of non-zero elements. Then

AL1B ifandonlyif for ac A and be B, we have ab #0.
R
(ii) Let a,beR. Then aﬁb if and only if
m(a) = [a,a'}i {b, b’} = n(b).

(iiiy Let X and Y be discrete variables. Then X »'Y if and only if n(X) 1 7(Y) ‘ )
R R
if and only if for ae o(X)\{0} and be o(Y)\{0}, we have ab+#0 .

For the concept of Q-conditional independence of events, we observe that
P(probabilistic)-conditional independence of a and b given c¢ 1is expressed by the
formula

P(ab|c) = P(a|c)P(b|o),
which can be rewritten as

P((ab]c)) = P((a|e)P(B]c)),

where we use P as a function on R|R with arguments (able), (a]c), (BlO), ..., viewed
as conditional events. This suggests that one could define (a|b) and (c|d) to be

independent with respect to P if and only if

B((a|b)-(c|d)) = P((a|B))P((c|d)) . ‘ |
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Definition 2.

®

() Let a,b,ceR. Then a 1 b|c ifandonlyif
P

Pronnuey
Sorassad

P(ab|c) = P(a|c)P(b|c)

i
L if and only if g
g‘g P((a]o)®|c) = P(a]c)P(b]c) .
(i) Let a,b,ceR. Then a and b are Q-independent given c, in symbols,
{ a L bc, if and only if (alc) 1 (blo), if and only if for (c]c) € ma|c) =
- 0 RIRc’ :
{1 {(a]c), (@’ |c)} , and for (B]c) e wlb]c) = {(b]c), b’ |6)} ,
j we have

(a]e)-(Blo) = ©Clo) .

Remark. (a|c)-(B|c) # (0|c) is equivalent to (afi|c)#(0]c) orto afc#0. Also, in
considering n(a|c), it is implicitly assumed that (a|c) and (a’[c) arenot (0|c) which
is equivalentto ac #0 and a’c # 0. Moreover, it can be checked that the O-conditional
independence in Definition 2 (ii) is strictly weaker than that for finite partitions in Shafer
et al (1987). Indeed, in our notation, their definition is expressed as:

Let X,Y and Z be discrete variables. Let

Bty
N ensmat

POV

A(e, X)) = {(a|c) : a € WX), ac #0).

(-u.-—.,
I

Then,XéYIZ if and only if ﬁ(X)éﬂ(Y)lﬂ(Z) if and only if for ¢ € n(2),

sbrarnane
[l

Ale, X)) 1+ Alc, n(Y)) .
RIRc’

'Re

We see immediately that if 1 1 1,|1 ¢ according to this last definition, then a 1 blc

B' according to definion 2 (ii), but that the converse does not hold. Thus, unlik% the

unconditional case, Q-con@i‘donal independence of events cannot be defined in terms of
It variables. In order to define a O-independence which will be compatible with stochastic
L independence for "continuous” variables, it is necessary to pay attention to “small sets.”
, In probability theory, these are P-null sets which form a o-ideal of subsets. This structure
“. is abstracted to o-ideals (for example, Halmos, 1963), a notion dual to that of the "bunch"

in Rényi (1970). See Section 5.1 .
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176 Conditional events and probability

In the discrete case, one needs to consider only the trivial o-ideal {0}. If P isa
probability measure on R, then J@, ={aeR:P(a)= 0} is clearly a o-ideal. Now

X .Y if and only if C(X)}J;O(Y) in the sense that for ae o(X) and be oY),
P

P(ab) = P(@)P(b). If ae O’(X)\J%, and be o(Y)\.A'gD, then P(ab) > 0 which implies
that ab¢ Je, so that ab# 0. If we were to require only that a ¢ o(X)\{0}, it could
happen that either P(a) = 0 or ab = 0. Thus we are led to

Definition 3. Let X, Y, Z be real-valued measurable functions (defined, say, on (R, R)).
() X 1Y if and only if there is a o-ideal A& such that for ae oX\A and
be o(Y)\Jl,%e have ab # 0.
(ii) X L Y|Z if there is a o-ideal A such that for ae o(X\A, be oY)\ A, and

c€ O(Z\A , we have a 1 b|c.
Q

- )
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CHAPTER 6
CONDITIONAL PROBABILITY LOGIC

Unlike Adams' approach to a logic of conditionals (Adams, 1975), we will take
advantage of the rich algebraic structure of the space of conditional events R|R to
develop a conditional probability logic (CPL). The concrete syntactic component of this
logic is especially useful for the purpose of automation. The problem of modeling
defaults and production rules in expert systems using measure-free conditionals as well as
aspecis of non-monotonic deduction will be discussed in Chapter 8.

6.1 Essentials of probability logic

In a sense, logic is about the study of knowledge representation languages in which
the basic notion of entailment (for inference) can be captured. We are concerned here
with the situat..a in which the uncertainty in our knowledge is taken in a quantitative
way. See for example, Bibel (1986) for general methods of automated reasoning.

However, because of the relevancy to the treatment of conditional events, we
address only the probability logic approach to managing quantitative uncertainty in expert
systems.  See, for example, Bibel (1986), Pearl (1988) for both Bayesian and
non-Bayesian formalisms. The so-called probabilistic logic (Nilsson, 1986) in AI has
been discussed in Chapter 5, together with an extension to the conditional case. In this
chapter, we are concerned with probability logic and its extension to conditional
probability logic from the viewpoint of mathematical logic. Since the CPL developed in
this chapter is a direct extension of probability logic (PL), we will first review the basics
of the latter. We start with a review of classical two-valued logic (C2).

In C2, the base space is a Boolean ring R (representing propositions) with its usual
operators and relations. Taking the concept of truth as the (only) primitive notion, one
proceeds to derive the concept of logical entailment. Each element of R is either true (T
or I)orfalse (F or 0), that is the truth-space of R is {0,1}. To emphasize the fact
that elements of R are true or false on different "possible worlds" one introduces the
concept of models. Roughly speaking, a model (or semantic valuation) of R is an
assignment of truth values to elements of R. However, such an assignment should be
logical (or consistent), that is, it should be such that no element of R could be
simultaneously true and false in the same assignment. Further two elements a, b are
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both true if and only if their conjunction ab is true. The mathematical translation of the
concept of consistent assignments is that of a Boolean homomorphism. The truth-space
(0, 1} is viewed as a 2-element Boolean algebra. Thatis, for x,ye {0, I},

xy = min{x,y},
x Vy = max{x, 7}, -
0'=11"=0.

We use the same notation ’, A (or -), and V on both the spaces R and {0,1}. A map
h:R-1{0,1} isa (Boolean) homomorphism if for a, beR

ha’) = [ha))’,

h(ab) = h(a)h(b),
and

h(a vV b) = h(a) V h(b).

The first condition is equivalent to h(a) # h(a”)).

A model is defined to be a homomorphism R - {0, 1}, and we denote the set of all
models of R by H. Thus an element a€ R is true in the model he H if and only if
h(a) - 1.

For further syntactic development, and for concreteness, we ook at an alternative
way of formalizing the concept of models. For elementary background on ideals and
filters, as well as some algebraic logic, see for example, Mendelson, (1970), or Halmos,
(1962, 1963). Since each h:R - {0, 1} can be identified with 2 subset of R, namely

h'] (1), we can consider the space Q= {h’] (/) : he H} as that of all models of R. We
describe now the elements of Q. Let @ = h'] (). Then first, @ C R, is a filter of the ring
R. That is,

(1) Ie€ w (I isthe greatest element of R),

(2 If a,be @ then abe w, and

(3) If ae w and be R, then aVbe @

Let ae @ Then a=a-1 and h(a) = h(a)h(l), implying that h{J) = I, that is, that
Tew=hlU). If abe o then hiab) = h@h(b)=1,s0 abe . For (3),a=alaVvb),

so that I = h(a) = h(a)h(a vV b) = h(a V b). Thus = 11'1 (1) is a filter.

9
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Moreover, each w= h"’ (I) is maximal, thatis, @ is a proper filter, meaning that
®#R, cr equivalently, that 0 ¢ o, and if ycR is a filter such that @c ¥ then either
Y=®@ or y=R. Since h(l)=1e w, h(0)=h(I’) =71’ =0, whence 0¢ w, and @ is
proper. Let 7y be a filter such that wcy. If w# 7, then there exists be ¥y with b ¢ .
Then h(b)=0,s0 h(b’)=1and b’ € wand hence b’ € 7. But then, since ¥ is a filter,
bb’=0¢ y,and y=R. ’

Thus, elements of Q are maximal filters of R. In fact, all maximal filters of R
can be described by homomorphisms, that is, Q is the set of all maximal filters of R. To
see this, it suffices to show that if ¥ is a maximal filter of R, then its indicator function
]')’:R - {0, 1}, defined by ]}[a) =1 or 0 according as to whether ae v or a¢ 7,is a
homomorphsim. The condition that h(a@) # h(a’) turns out to be a characterization of
maximality for filters.

Lemma 1. A filter v of R is maximal if and only if for ae R, either acy or a’ €y
(but not both).

Proof. Suppose that v is a maximal filter and that b ¢ y. Then

B={xy:xeybs<y)

is a filter). Taking y =1 gets yc . Taking x=1 and y=b gets be 3. Thus S
strictly contains ¥, and thus 8 =R. Hence 0 =xy for some x€ ¥ and y > b, and so
x<y"<b’. Thus b’ ey

The proof of the converse parallels the proof above that @ = Iz'] (1) is maximal.

From the lemma above, it is easy to check that indicator functions of maximal filters
are homomorphisms. Indeed, by Lemma 1, Ifa’) = [I{(a@)}’. For a, beR, we have
Ifab) =1 ifand only if abe v if and only if a, be ¥, 1(ab) = 1,{a)I.{b). Similarly,
IfaVvb) =1LV 1.{b), and Iy is a homomorphism.

Regarding the set Q of maximal filters of R as the set of models of R, an
element ae R istruein amodel we Q if a € w.

Remarks

1. Since filters and ideals are dual in the sense that if o is a filter of R, then
o’ ={x’ :xe a} is anideal, and if ¥ isanideal, then ¥’ = {x":x¢ 7} is a filter, the
classical Stone Representation Theorem for Booleaa rings can be also stated in terms of
maximal filters (that is, models). Specifically, define y: R -+ $(Q), power set of Q, by
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Yya)={we Q:ae w}.

Then w(0)=0, y(I)=Q, and for a # 0, y(a)#®. (The third property is not a trivial
one. See the second remark below.) By maximality, for we Q and aeR, if ae @
then a’ ¢ o, so that

wa’) = ().

(We use (-)C, n, and v for set operations on 2(2)). Also, a, b e @ if and only if
ab € w, implying ’

y(ab) = yla) 0 () .
This, and DeMorgan's laws readily yield

wia vV b) = yia) v yib).

Hence y is a homomorphism from R into P(Q). y is one-to-one since 1;/'1 @) = 0.
Thus an appropriate subset of models is identified with a proposition in R, namely, a
proposition a is identified with the set of models @ in which a is true. .)

2. The characterization of maximality in Lemma 1 is a property shared by atoms of
R. For ae R, a#0, and an atom ¢, we have either x<a or a<a” (but not both). In
fact, the principal filter RVo={rvVa:reR} general by an atom ¢ is maximal
Moreover, ¢ is the unique atom in R V o= In general, the class of all maximal filters Q
of R islarger than that of these principal maximal filters. However, if the ring R is such
that every maximal filter is principal, then they coincide. That is, R Va is maximal if
and only if a is an atom. Indeed, if b <a, then RV Db properly contains RVa, b
being in the former and not in the latter. For example, if R is finite, then models of R
can be identified with atoms of R.

We continue now with the basics of C2. For deduction, we consider the concept of
logical entailment relation, denoted by E. Roughly speaking b logically entails a, in
symbol b F a, if whenever b is true, @ is true. In our setting here, this me2ns that bk a
if and only if for we Q, if be w, then ae w. The following fact is well-known.

Lemma?2. bEa ifandonlyif b<a.

Proof. Suppose b<a. For we Q such that be w, we have a=b Vae o, since

o is a filter. .)

Conversely, suppose bFa. For each we Q such that be @, we have, by
hypothesis, a € , and hence abe ® since © is a filler. We are going to show that
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b=ab. Suppose ab<b, that is, b(ab)’ #0. But then, there is ye @ such that
b(ab)’ € v. Now b(ab)’ <b implying b € ¥, b(ab)’ < (ab)’ implying (ab)’ € ¥, that s,
ab ¢ v since ® is maximal, which is a contradiction.

Remarks

1. In the proof above, we have used the following well-known fact. If xe R and
x # 0, then there is a maximal filter @ such that xe€ @. R V x is a filter containing x,
and this filter can be enlarged to 2 maximal one. That statement is not at all obvious,
involving set theoretical niceties such as Zom's lemma. It should be noted also that for
each element x # I, there exists a maximal filter not containing x. Indeed, any maximal
filter containing x” has that property. In particular, the only element contained in every
maximal filter is 1.

2. A simple proof that every non-zero element of R is contained in a maximal
filter, in the case of atomic R, goes as follows. Asnoted, R Vx is a filter containing x,
and since R is atomic, there is an atom y with y<x. Then RV y isa maximal filter
containing X.

3. Itis obvious that b<a if and onlyif b-a=>b"Va=1, thatis,b-a isa
tautology. (An element x is a tautology if for every e Q, xe @. Thus the only
tautology is I). Lemma 2 expressed the logical entailment relation F in classical
two-valued logic in terms of the (partial) order relation <. This explains the monotonicity
of F (due to the transitivity property of <). For more details, see Chapter 8.

Now to Probability Logic (PL). PL, as a multi-valued logic, has been treated, for
example, in Rescher (1969), Hailperin (1984), Nilsson (1986). See also Goodman and
Nguyen (1985). The formal language of PL is the same as that of C2. Thus the base
space of PL is also a Boclean ring R. As far as Al is concemned, there is a need to
generalize C2 to PL in order to reason with uncertain information, such as in expert
systems.

For each sentence a € R, there are «wo sets of "possible worlds” (that is, models):
{w:ae w), and (w: a¢ w}. Not knowing the actual model, one considers the
probability of @ being true as a "truth value” for a. This is obviously a generalization of
C?_. In view of the axioms of probability measures on R, PL, with truth-space the unit
interval [0, 1], is a non-truth functional system. A model for PL is simply a probability
measure P on R.

In view of Stone's Representation Theorem (in terms of maximal filters of R),
models for PL can be also viewed as probability measures on a class of subsets of models
in C2. Also, with its axioms, each probability measure P on R acts like a "homomor-

phism-like” map. As in classical deduction, the concept of probabilistic entailment
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relation is crucial for probabilistic reasoning in intelligent systems (for example, Pearl,
1988; Neapolitan, 1990). See alsc Hailperin (1984), Nilsson (1986).

We say that a is probabilistically entailed by b, in symbols b 1; a, if for all
probability measures on R, P(b) S P(a). In view of Lemma 2 of Section 2.2, this is
equivalentto b<a or bFka. Also,ae R isa probability tautology if P(a) = 1, for all
probability m._asures P on R. Again, by Lemma 2 of Section 2.2, this mean that a = 1.

At a practical level, probabilistic entailment is defined as the computation of the
probability of a sentence in terms of the probability values of other sentences. As
Hawthorne (1988) stated clearly, this entailment is in fact a "partial” entailment, that is,
entailment with "degrees.” This is precisely the problem of combination of (probabilistic)
evidence. The decision as whether or not to "infer" a from the bl.'s depends upon the
magnitude of P(a). A computational procedure for this prcblem is given in Nilsson
(1986). See also McLeish (1988), and Section 5.2. For discussions concerning PL and
non-monotonic logics, see for example, Grosof (1988), Hawthome (1588), and Chapter 8,
Section 8.2 .

Probability logic is sound and complete. We close this section with the concepts of
truth semantics and of probabilistic entailment in the conditional case (Adams, 1975).
This will be served as a comparison with our development of conditional proba'bility logic
in the next section.

First, we take this opportunity to clarify several basic aspects in Adams' book, in
view of the mathematical development of the conditional space R|R and its associated
three-valued logic (Chapters 2, 3). By Lewis' Triviality Result, it is seen that if we assign
conditional probabilities to “indicative conditionals,” then these conditionals, at the syntax
level, are not, in general, elements of the Boolean ring R. This fact is expressed in Pearl’s
book as “"conditionals are non-propositional” or "... classical logic does not possess an
operator equivalent to the conditioning bar (-|) in probability,” (Pearl, 1988, p. 475,
482). In Adams’ book, it is expressed as "conditional propositions are not assumed to
correspond to subsets of a sample space,” and as "these objects do not have truth values”
(Adams, 1975, Preface and p. 9). It becomes clear that, under the fundamental assumption
of Adams' work (p. 3), namely "the probability of an indicatve conditional is a
conditional probability,” a conditional "if b is the case then a is", is a subset of R
rather than an element of R. As far as truth values are concemned, it is apparent that
Adams was referring to classical two-valued logic. Each conditional (a|b) does have
truth values, namely true (J), false (0) or undefined (u). As such, we agree with Adams
that "probabilities of conditionals are not equal to their probabilities of being wue.” All
the above can be proved in our representation of conditional events (a|b) as cosets of
R|R).

9

9
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Let P be a probability on R. Of course P(a|b) is a function of P(ab) and P(b)

(when P(b) > 0), and it is true that the truth-values of (a|b), denoted as ?(alb), is a
function of #(ab) and #2(b). Indeed,

1if fab) = I
Talp)={0if ta’t) =1 -
wif () = 1

where £:R-{0,1} isa Boolean homomorphism. The knowledge of #(ab) and 1)

completely specifies ?(a[b), since {ab,a’b, b’} is a partition of 1.

The point is this. Since (a|b) is not "Boolean,” its truth-values shouid not be
resiricted to {0, I}. we see that, with the truth-space being {0, I, 4}, conditionals are
truth-functional and their probabilities are conditional probabilities. On the other hand,
contrary to Adams' attitude conceming Lewis Triviality Result (Adams, p. 35), namely
"The author’s very tentative opinion on the “right way out" of the triviality argument is
that we should regard the inapplicability of probability to compounds of conditionals as a
fundamental limitation of probability, on a par with the inapplicability of truth to simple
conditionals. What is needed at the present stage is less mathematical theonizing than
close examination of the pheno.nenon of inference involving these problematic
constructions, ...", we have resolved these problems from a mathematical gnalysis. Indeed,
first, there is no problem with compounds of conditionals, since there is ro need to assign
probabilities directly to such objects. Simple conditionals have truth-values in {8, I, u},
and, as cosets of the ring R, have well-defined prcbabilities as conditional probzbilities
(see Chapter 5). Viewing R|R as the space of conditionals with three-valued logic, we
can derive basic connectives on it (sece Section 3.4). Given a system of truth tabics in a
three-valued logic, there corresponds a system of connectives A, V, ’, say, on R|R.
These connectives are operators on R|R, that is, any compourd of conditonzis is a
simple conditional, so that probability is assigned in the same way as for simple
conditionals.

In our notation, R is a factual language, and R|R is its conditional ex:ension, and
(alb) is b= a, in Adams' notation for conditionals. Let ¢:R-{0,1) be a truth
function. Adams considered the "truth-conditional semantics,” that is, tuth evaluations on
R|R as follows.

a) (alb) is "verified” under ¢ if 1(@) = «(b, = I,

B) (a]b) is "falsified” under ¢ if 1(b) = I and 1(a) = 0.

But, in our development of three-valued !ogic for R{R, o) and ) say nothing more than
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the truth-values of (ajb) are I and O, recpectively, in {0, 7, #}. Of course, when a
conditional (a|b) 1s neither verified nor falsifizd, its wuth-vajue is #  It is this
"non-verification values” u which Jompletes tae discussion concerning sementics of
conditionals.

Finally, as mentioned ir previous chapters, aishough conditicaals are no: reated as
mathematical entities in Adams' book; Acams did propose basic corneatives among thems,
namely “contrary,” “"quasi-conjunction” and "quais-disjunciion” {Adawas, 1975, p. 46-47).
These connectives were proposed earlier by Schzy (Schay, 194S?, and were redis~overed,
in an independent work, later by Calabrese (Calabresz, 1987). Thece conneciives
correspond precisely to Sobocinski's shree-valued logic. (See Secsi>a 3.5.)

Now 0 Adams' e-semantics. From e formal denguage ¢ (or R), of clagsical
two-valued logic, consider its exiensian ..‘? t¢ "conditional forxulas,” deaoted
..‘?= {aab,a be X}. a= b sands for #n indicative condisional of the form "if a is
the case then b is” in natural langnage, for esample, in ordinary English. In the stady of
probabilistic semantics fcr default rezsoning (Pearl, 1988, Chapter 1(W, .5? is the set of
default statements which are "non-propositional” in the vense that they invelve the "arrow”
3 connecting two propositional formulay. So a 3 b is pon “Boolean,” that is, a4 b is not
an element of . or of the Boolean ring R. See aiso Duvoic and Prade (1929) for the
modeling of defaul: rules by conditiorals. Also, here 24 is nez the material implication
cornecive - . In fact, excep: for a methematicd representation of the cbject a2 o,
Adams’ inteation was to provide & semeatic evaluaticn map compatible with conditional
probability for # Basic connectives cn .é\ are dejined as follows (sec Chapters 1, 4).

(a2Db) ={aa3b’),
(@aabyr(cad)={aica@-5{c-4d),
(@a3b)yVicad)=@Vvbaabvcd).

As befere, a probability model is a probability measure 7 on . The associated
.. . . .
“truth conditional semantics” for ¢ is dzfined by

B: 210,11, Plasb)=Pbla).

The set of cond:tional fommulas {(_ai 2 bi)' i=1,.,n) issaid 1o enieil the condinicnal
formula ¢ d ifand onlyif foraull €>0,thereis 5> 9 such that forall P on 2o
which P(ai.‘) >0,i=1,..n and Plc) >0y, if P(biiai) 21-§,for i=1, .., 650

Pldic; >, 7- ¢ This concept of cniailmeni in Adams’ conditional probability logic i

"
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suitable for default reasoning in Al in which .¢ is a collection of propositions and 2is
a set of default statements. Indeed, for a default statement a3 b = "almost all a's are
b's," one translates "almost all" into "P(b|a) is arbitrary close to 1, short of actually
being 1" (Pearl, 1988, p. 480); moreover, the set of defaults

I(ai 3 bi)’ i=1,..,n} oL

logically entails (¢~ d) if P(bilai) is "high," i = 1, .., n, then P(d|c) is also "high."
For more details on this "e-semantics,” we refer again the reader to Pearl's book (1988).

6.2 Syntax and basic properties.

Let the Boolean ring R be the base space for classical two-valued logic (also for
probability logic). The base space for the conditional probability logic (CPL) we are
going to develop is the mathematical conditional extension R|R with its algebraic
structure established in Chapters 2, 3 and 4. Now elements of R|R, that is, “"conditional
formulas," are mathematical entities, and we can describe special elements of R|R asin
the case of R. Specifically, we are going to describe syntactically "contradictions" and
tautologies on R|R, in a manner compatible with truth conditional semantics in Section
6.3. By the same token, various characterizations of implicative relations in CPL are
given, generalizing those of material implication in classical logic.

First, in probability logic, an element ae R 1is called a "contradiction” or a
"P-tautology" according to P(a) = 0 or P(a) = 1 for all probability measures P on R.
By Lemma 1 of Section 2.2, these are equivalent to a=0 or a= 1. The counterparts

of 0 and I on R|R are now described. Observe that R|R = v R|Rb’ where each
beR
R|Rb’ is a Boolean ring with its coatradiction and tautology (0|b), (1 |b), respectively,

provided b # 0. Thus,

Definition 1. The classes of zero-type conditionals and unity-type conditionals are,
respectively

Z={(0]b), be R\0}}
and
A= (1]b), be R\N0)) .

In the Section 6.3, we will show that these concepts are compatible with truth conditional
semantics on R|R. The following theorem summarizes basic properties of % and A
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Theorem 1.
() Both % and % are closed under - and V on R|R,

(@) Z (resp. %) has the ideal-like (resp. filter-like) property: R|R): & = z
(resp. R|R)V U= %),

@iy Z vV {(0|0)} isclosed under -,V,+ on R|R,

(iv) Zand % are "complementary” in the sense that

Z={(|b)’ : (blb)e %},and
H={0]|D) : 0|b)e B} .

Proof. (i), (iii), and (iv) are obvious from the definitions of tlwc operations on R|R.
Since

(@lb)-©|c)=(©|a’bve)e %,
I {1)(0]b) = (0]d),

(@lb) v (c|c) = (ab]b) V(c|c)=(abVclabVc)e %,
and
0[O0y v (b]b) = (b]b),
part (ii) holds. o

It is known in classical logic that the material implication b - a is a tautclogy (that
is, boa=1) if and only if b<a (thatis, b “strictly" implies a). This fact is a
characterization of the binary Boolean operator - . In other words, - is the only binary

Boolean operator on R having this property. Indeed, it is obvious that if f: R2 =R,

fla,b) =b-a=>b"va,then fla,b) =1 whenever b<a. Conversely, if f: R2 <R is
such that

fla, b) =1 if and only if b<aq,
then

1, 1) =/1,0)=f0,0)= 1,
and f(0, I) = 0, so that the normal disjunctive form of f(a, b) reduces to
fla,by=abVvab' va'b’ =ava’b’  =avVvb’.

The situation in conditional Jogic is somewhat different in the sense that there are

.)
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various conditional Boolean polynomials in two variables satisfying the counter-part of the
equivalence betweeen strict implication in two-valued logic and being a tautology.
Spe.ifically, strict implication in two-valued logic is replaced by the order relation on
R|R (see Chapter 3), and tautologies in conditional logic are elements of % that is of the
form (b|b) with b#0.

We are going to characterize conditional Boolean polynomials f in two variables
satisfying the following equivalent condition. For any a, b,c,de R with b, d #0

falb), cld) e %
if and only if

(a|b) < (c|d)
We may assume without loss of generality that f is of the form
f=@|p=(a|javy,

where ¢, 7: R4 -+ R are Boolean functions, and oy = 0. Theorems 2 and 3 below shed
light not only on conditional logical operations taking values in %, but also are needed
in proving that CPL is sound and complete (Section 6.4).

Theorem 2. Ler f: (R |R)2 - R|R be a conditional Boolean polynomial in two variables.
The following are equivalent.

(i) For a,b,c,deR,with b,d+0,
falb), (c|d)) e % if and only if (c|d) < (a]b).
(i) f is of the form f = (o| ) = (et] a V 7)), where
1 a, b, ¢, d) = (ab) (cd) V (a’b)(c’d)’,

and « Is a Boolean function such that « <n’,and oo#0 when 1= 0.
Proof. To prove that (i) implies (ii), we use the criterion that (c|d) < (a|b) if and

onlyif cd<ab and a’b £ c’d. This is the same as

(cd)(ab)’ = 0= (a’b)(c’d)’,

or

(@b)’ (cd) v (a’b)(c’d)’ =0.

Thus n=1(a, b, ¢, d) = (ab)’(cd) v (a’b)(c’d)’ =0 if and only if (c|d) £ (a|b). For
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@) to hold, f= (@|a vV 9) has to be such that y= 7, since otherwise it is possible that .)
simultaneously a, b, ¢, d) =0, a(a, b, ¢, d) # 0, and 7(a, b, ¢, d) # 0, contradicting (i).
That (1) implies (i) is easy. )

The precise forms as well as the total number of fs in (ii) can be determined as
follows. Let

ab ifi=1
wi@lb) =) 1o 45 1=
b’ ifi=u.

We have
n(a, b, ¢, d) = (ab)’(cd) V (a’b)(c’d)’
=a’bedVb'cdVa’'bd’
= wola|b)wi(e|d) V wyla|Blwi(c|d) v wola|bywa(c|d)
= V(i,])eJ wi(a|b)wi(c|d), .)
where J = {(0,]), (u,1), O,u)}. Thus afa, b, ¢, d) must be of the form

where

K = {(0,0), ,0), (1,0), (1,1), (1,u), (u,u)}.
As examples, for
K ={(0,0), ,0), (1,0), (1,1), (1,u)},
a=a’bc’dVabc’dVabcdVabd Vb'c'd=abVc’d.
When n=0,
"=abvc’dvbid =1

But for b, d#0,b’d’ <1,sothat abVc'd#0. Here,abVc'dvyn=>bVd Thus f is

of the form .)

f(alb), (c|d) = (ab Vv c'd|b V d).
For
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K =(0,0), ,0), (1,0), (1), (1,u), (u,u)},
a=abVc'dVb’'d’, whichis not 0 when 7=0. Infact oc=1 when 1n=0. Thus

fa|d), (c|d) =@bVvc’'dvb'd |])

since foralla, b,c,de R -

abve'dvb'd vn=1
These two forms have interesting mterpretauons The last,

fla|b), (cld) =(abV c’'dVb’'d’ |1)),

is the consequent of Lukasiewicz's implication (see Section 3.4), where the consequent of
a conditional (a{b) is defined to be C(a]b) = ab.
Using Theorem 3, Section 3.4, it can be checked that the first form

f((alb), (c|d@)y=(abV c’d]|b v d)

corresponds to Sobocinski’s truth table for impiication. This truth table is given in
Rescher (1969, p. 70) with the sign + (respectively -) in front of the truth valuess to
indicate "designated" (respectively, "anti-designated") values for consideration of
tautologies (respectively, contradictions) in multi-valued logic. We will discuss this
further in Section 6.3. Adams, Calabrese, and one of Schay's conditional disjunctions Vg
are all defined to be

(a|b) Vo (c|d)y=(ab v cd|b vd).
Thus
f2((a]b), (c|d)) = (a]b) Vo (c|d)’.

We will return to this observation in Section 6.4.
Not all subsets K of

{0,0), 0), (1,0), (1,1), (1,u), (,u)}

lead to s satisfying condition (ii) of Theorem 2. For example, if

= {(1,0), (1,1), (1,u), (1)},

then

o=abd’ VabcdVabc’'dvb’'d =abvb’d.
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Taking a=c=0 and b=d = I, we have,
ab’ Vv ¢’'dvb’d’ =1,

sothat 77(0, 1,0, I)=0. But a0, 1,0,1)=0. Thus a(a, b, ¢, d) = ab V b’d’ does not
satisfy our condition (ii). ‘

We now look closer at f; and f,. First, since fi = (x|jaVvn) with a=17", we
see that for all a, b, ¢, d € R, f satisfies -

f(alb), (c|d)) e % if and only if (c|d) < (a]b). *)

Now f, does not satisfy (*). Indeed, when 7 = 0, we have abc’d = b v d. This
equality holds also when b =d =0, but then f5((a]0), (c|0)) ¢ %. However, f, satisfies

f(alb), (c|d)) e % ifandonlyif (c|d)<(alb) and b or d#0 (**).

Indeed, when (c|d) < (a]b), we have abV c’d=bVd. If b or d is#0,thenabVvc’d
=bvd=0,and hence f((a|b), (c|d) e %. Conversziy, if £,((a|b), (c|d) € %, then
abVc'd=bVvd=0,implyingthat 1=0 and b or d# 0. On the other hand f; does
not satisfy (*¥), since fi((a|0), (c|0)) e %.

It turns out that (¥) and (*¥) characterize f; and f,, respectively. Consider first
the condition (¥). As before, f= (a| & v 1), where

o(a,b,c,d)= V(i ek wi(alb)wj(cld),
with
K g {(0}0)) (u)o)f (110), (111)’ (I,u)’ (uiu)}'

We are going to show that if K is a strict subset, then there is an (g, b; ¢, d) e R™ such
that oa, b, ¢, d) = 0. We only have to look at subsets of abV ¢’dvb’d’ =1’. We
already know from above thatif a is abVc’d or abVb’d’ or c’dVb’, then f will
not satisfy (*). Thus it suffices to consider subsets of the form abVc¢’'d Vxyb’d’ or

4

abVxyc’dvb’d’ or xyabVc’'dVb'd’, where x and y can be one of @, b, ¢, d, or
their complements. For example, in the case abV c’d Vxyb’d’ where xyb’d” # b’d’,
then when 17 =0, we have abVc'dVxyb’d” = ((xy)'b’d’)’, and it is easy to pick x, y,
b, d sothat (xy)'b’d’ = 1. The other details are left to the reader.

Consider now the condition (¥*). For (¥*) to hold, f = (a]a V 7)), where

ofa, b, c, d) = V(i ek wi(a|b)wi(c|d),

with

'Y

'Y
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K ¢ {(0,0), @.0), (1,0), (1,1), I,u), (u)}.

We are going to specify K so that (**) holds. We need to pick o« so that o> 0 is
equivalentto b or d being >0. Now b or d>0 ifandonlyif bV d> 0. Using the
decomposition of b Vd in terms of the wi(a|b)wj(c|d)'s, we see that b V d if and only
if wy(a|b)wi(c|d) > 0 for some (i, j) # (4, u). But when (5[d) < (a|b), that is, when
11 =0, we have wi(alb)wj(cld) =0 foral (4 )) e {0, ), (u, ), (0, w)}. Thus
ola, b, c, d)>0‘whcn N=0 and b or d=0 only for

K2 ((0,0), (1,0), 1,0), (1.1), (1,w)}.

But the upper bound of X is {(0,0), @,0), (1,0), (1,1), (1,u), (u,u)}, and it leads to f;,
which does not satisfy (¥*). Hence K must be {(0,0), (1,0), (1,0), (1,1), (1,u)}, which

yields fz.
In classical two-valued logic, the equivalence realation « defined by

a—b=(@-b)A(Dd-a)
is characterized as the only binary Booiean operation f such that
fla,b)=1 ifand onlyif a=>.
Using the definition @ -+ b = a” vV b, this is routine to check. The counterpart in

conditional Jogic is expressed in the following theorem.

Theorem 3. Ler f: (RIR)Z - R|R be a conditional Boolean polynomial in two variables.
The following are equivalent.

(i) Forany a,b,c,de R with b,d#0,
flalbd), (c|d)) e % if and only if (a|b) = (c|d),

(ii) f is of the form (o|aV &), where
&(a,b,c,d) = (ab + cd) V (b + d),

a is Boolean, o< &', and o # 0, when & = 0.

Proof. First, (a|b) = (c|d) if and only if ab=cd and b =d. This is the same as ab +
cd=b+d=0,0or (ab+cd)V(b+d)=0. Let

é = é(a,b,c,d) = (ab + Cd) v (b + d).
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Then .)

E=ab’cdVabd’ Va'bedVb'cdVa’bd’ Vb'c'd

=V (et Wi(alb)“t’-(cld)»

where
J= {(u;0)9 (]10)’ (ll,]), (],U), (0’1): (O,U)}.
Now, that (ii) implies (i) is obvious, and (i) implies (i) since f= (c|c vV ) will satisfy
@if y=2¢. | o
The specific form of ais

a=V Qe wi(alb)wj(cld),

where '

1c (0,1, ) - = {((0.0), (1), (1))

Again, not all subsets I lead to an o satisfying (ii). Two interesting candidates are

®

I={0,0), (1I.I), uW)},
and
I={(1,D), (0,0)}.
For the first,

a=a’bc’dVabedV b'd’.
Here, B=aVvE=E&" vE&=1,so that
f3((a|bj, (c|d)) = abed V a’bc’d v b’d’

When £€=0, x=1, and hence =#0.
For I={(l,1), (0,0)}, x=abcd Va’bc’d. When £=0,

& =1= abcdva’'bc’dVb’d.

Butfor 8#0,d#0, we have b’d’ <1,sothat abcdVa’bc’d=0 foral a,ceR. |
Here B=oaVy=0bVd,and .)

falalb), (c|d)) = (abcd v a’bc’d|b v d).
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The conditional polynomial f; cormresponds to the consequent of Lukasiewicz's
three-valued logic equivalence, while f; is the syntax of Sobocinski's three-valued logic
equivalence. See Chapter 3 for more details.

: It turns out that f3 and f3 are the only candidates. Indeed, for other I ¢ {(0,0),
. (1,1), (u,u)}, one can find aq, b, ¢, d, with b # 0 # d, such that o(a, b, ¢, d) =0 when
: &(a, b, ¢, d) = 0. For example, if I = {(1,1), (u,u)}, then a=abedV b’d’. Taking a=c
=0 and b=d=1,weget £0,1,0,1)=0, and a(0,1,0,1)=0.

As afinal note, f, and fy satisfy

]
%
et

falb), (a]b)) = (®]b).

6.3 Truth conditional semantics

This section consists of extending the bzsics of classical two-valued logic (Cz) and
Probability Logic (PL) to Conditional Logiz (CL) and Conditional Probability Logic
(CPL). By Conditional Logic, we mean Lukasiewicz's three-valued logic on the
conditional space R[R, where R is a Boolean ring, or equivalently, R|R equipped with
logical operations developed in Chapters 3 and 4. By Conditional Probability Logic, we

. mean a multi-valued logic with base space R|R on which truth-values are conditional
] : probabilities. The base space of CL is a (special) Stone algebra R|R (see Chapter 4).
! Similarly, the truth-space of CL is the Stone algebra {0, u, I}, with 0 < u < I, with the
l : following operators. (See Section 3.4 for the appearance of {0, u, I} as the tuth space

; for R|R.) We use the same notation “, A, and V on R|R. In view of Lukasiewicz's

truth tables, for i, je {0, u, 1}, we have
i Aj=min{i,j}, iVj=max{i,j},
i, 0'=11"=0, u" =u

i The pseudo-complementation on {0, u, I} is 0* =], u* =0,1 . 0, which does satisfy

Stone's identity i* v i** =1,Vie {(0,u, l).
First, we formulate the concept of 2 model in CL.

- Definition 1. A model in CL is a homomorphism from R|R to (0, u, 1}, that is, a map
‘. preserving the operators * , A, and V.

‘ It turns out that models in CL can be built from those in C,,. Specifically,
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T Theorem 1. .)

() If e Q is a maximal filter of R, then the map hco :R|R-{0,u,1} defined

J by
lifabe ©
f hfall) =)o i abe 0 -
ifb e @
F is a homomorphism.
. @) If h:R|R-{0,u,1} isa homomo:phfsm, then there is an we Q such that
1 ) h=h o
Proof. Note that since {ab, a’b, b’} forms a partition of I, and ® isa maximal
l filterof R, h © is well-defined. For the proof of (i) we have
4 lifa'be o
i hf(a]e)’) = hyfa’|b) =3 0 f ab e @
i uif b’ e o .
H
i3
In view of Lukasiewicz's negation on {0,u, 1} (see Section 3.5),we get .)

h,((@]B)’ = [k, (a|B))’-
! By DeMorgan's laws on R|R (Theorem 3, Section 4.1) and the fact that
i it remains only to show that for (a|b), (c]d) € R|R,

I'4

is involutive,

t * hw[(alb), (c|d) = h fa]bh (c]|d) -
Now
(a]|b)(c|d) = (ac]a’b V c’d V bd).
Since
ac(a’b Vv ¢’d Vv bd) = abcd,

and abcd € @ if and only if abe @ and cd € o, (*) is true for the value 1.
For the value 0, we have

(ac)’'(@’bvc’dvbdy=a’bvc’de @

if and only if cither a’b or c¢’d (or both) € w. Thus, in view of Lukasiewicz's .)
conjunction on {0, 1, 1} (see Section 3.5), (¥) is true.
Finally, the following are equivalent:
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(1) hg [(a]b)(c|d)] =y,

() a’bVc’dvbds o,

(3) a’b,c’d, bds o,

@ avbd',evd,b’vd e,

(5) (@ or b’ € w) and (c or d’ ¢ w).

The case "only @ and ¢ are in @" is excluded, since then abcde o,
contradicting the condition h [(a]|b)(c|d)] = u. All remaining cases correspond to
h (alb)h (cld) u. Forexample ifonly @ and d’ arein @, then abe @, d’ € o,
andhence h (a]b)hw(cld) I-u=u.

To prove (i), let h:R|R-{0,u,1} be a homomorphism. Let g be the
restriction of & to R viewing R as R|I. This restriction g can only take values in
{0,1}. Indeed if there isan ae R such that g(a) = u, then since g is obviously a
homomorphism from R to {0, u, 1}, we have

0 =g(0) = glaa”) = g(a)g(a’) = [g(a)llg(a)]’ = uu’ = uu=u,

which is impossible. Thus g is a Boolean homomorphism between R and {0, I}, and
hence is the indicator function I of some maximal filter @ of R.
It remains to show that h= Observe that

(a|b) = (ab| )V [(b" | )(0]0)]

and

©0]0)" = (1]0) = (0]0),

which implies that #(0]0) = h(0]0)” = [h(0]0))" = u since u is the unique element in
{0, u, 1} such that u’ = u. Thus

h(a|b) = Im (ab) v I, b')-u.

From this, since ha) (b’)-usu, h(a]b)=1 if and only if Ia) (ab) = 1, if and only if
ha) {alb) = 1. Next, k(a|b) = 0 if and only if Ico (ab) = Ico (") = 0, if and only if
Ico (a@’b) = 1, if and only if hco (a|b) = 0. Finally, h(a|b) = u if and only if Ico (ab) =
0 and Ia) (") = 1, if and only if hco (a]b) = u. o

In view of the Theorem above, models in CL are preciscly (£ o QF Q).
We investigate now two possible counterparts of maximal filters in the case of Stone

algebras. First, consider h (l) Since (0]0) = (0]0)" does not belong to any lz (I)

the characterization of maximality of (Boolcan) filters does not hold for 'e) (I}.
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‘However, other properties of @ remain valid for hc-oz (7). In particular, each set h(;)l 0]
is a filter in the latice (R|R, A V). That is, if (a|d), (c|d)e hc-oI (1), then
@|B) Al e B,

and if (a[b) e /(1) and (c|d) € RIR, then .
@|B) v (c|d) e D).
In fact, since h w:RlR-: {0, u, 1} is a homomorphism, each hc'ol (1) satisfies the
following stronger conditions:
M) @]b), Ccld)ye b/ Eandonlyif (ab)Alelden ),
@ (@lb) v (cld e k(1) ifand onlyif (a]b)e k(1) or (c|d)e h (1), and
® dIner]@. Okl 00 Bl
Moreover, the class ./51 of filters of R|R satisfying (1), (2) and (3) are the
hc-ol (), we Q. To see this, let AcCR|R satisfy (1), (2) and (3), and set @=AnNR,
where R is ideniified with R|J. @ is obviously a filter in R. Morcover, for a€ R,
either (a]I) or (@'|1) isin A, since otherwise,
(| )V @ |1 = D)
will not be in A, by (2), a contradiction. Thus ® is maximal. It remains to verify tha:
A= D). X (@]b) € b (D), thatis,abe @ = AnR, then (b]I) € A. But
(a|b) A (ab]1) = (ab]1), so that (a]b)e A by (I). Conversely, if (a]b) € A, then write
(alb)=abVv(b’-(0]0))e A. By (2), we have abeA or b'-(0]0)eA. Bu
b’-(0}0)e A holdsonlyif b e A and (0]0) € A, by (1). However, by (3), (0]0) ¢ 4,
thus only abe A holds, that is, ab e @, so that h m(a[b) =1 o

Consider now A M({w, 1)), @eQ  Since h :RIR=(0.01) is a
homomorphism, the following facts are casy to derive:
® A /(e 1)) AR = © 2 maximal filier of R.

(i) for (a|b) e (R|R), (a]b) e h;olf{ﬂ, 1)) or (a]b}’ ¢ lz(;)I(fzt, I, or both.

L

&)




Truth conditional semantics 197

(i) If (a]b) € b1 ((, 13), then for (c|d) e RIR), (a]®) V (cld) € . 1 ((w, 1D).

(V) (a]b) A(cld)e b ((u, 1)) if and only if both (a|b) and (c|d) are in
holiw, 1y).

®  @BVeEldeh (1) i amd only ¥ (@[Beh (1) or
(eldye b (u, 1)), '

(i) for be R, (I|5) ek} ((w, 1.

vii) (a|8) € b [((, 1)) ifandonly if b-a=b’Vae o

As in the case of hc'ol(]), the class u% of filters of R|R satisfying (i)-(vii) above
is precisely {hc'ol({u, 1)), we Q}.

-1
()]

filter satisfying (i)-(vii), and hc'ol({u, 1)) c A, then hc'ol({u, a}) = A, that is, hc'ol({u, I8y
is "maximal." Indeed, we have @wcC A NR = a maximal filter of R by (i). But then
w=AnR. From (ili) and the above observation, if (alb)e A then (b-a)e w,

Remark. Since (0]1)¢ h_~({u, 1}), the filter hc'ol([u,]}) is proper. If ACR|R isa

implying that (a|b) € A ({u, I)).

We specify now basic semantic concepts of CL. Recall again that Q is the class of
models (maximal filters) of R. In order to define the concept of tautologies in terms of
models of R|R, we need to specify the class of "designated truth values” (Rescher, 1969,
p. 66-71). Indeed, as in any multi-valued logic, among the truth-values 0, u, I, we have
to classify (or designate) certain of these values as "truth-like" values (for the concept of
contradictions, the dual concept is "false-like" values or "antidesignated” values). Thus, if
1 is the only designated value, then a|b e R|R is a tautology if it is "true” in all models

of R|R, thatis, for we Q, (a|b) e hc-o] (I) . Ttis clear that (I|I) is the only tautology

in this sense. Indeed, (a|b) e hc-o] (1) ifandonly if abe w. Thusif 0 < ab < 1, then
(ab)’ #0, so that there is some we £ such that (ab)’ € @ and hence abg w. Of
course, if ab =1 then b2ab implyingthat b = I, and (a|b) = (ab|b) = (I|1).

If {u, 1} is the set of designated truth-values, then (a|d) is a tautology if for
we Q, (@|b)e hc'ol({u, 1}).

Now 0 < ab < b, then a’b# 0, so that there is some ye Q such that a’be ¥, so
that (a|b) ¢ h;/]({u, 1}). Thus ab =b#0, that is, (a|b) = (ab]b) = (b|b) = (I|b), and

hence, the class of {u, I}-tautologies is {(/|b), be R\(0}} which is the class of




198 Conditional probability logic

unity-type conditionals % investigated in Section 6.1. Note that for e Q,
h w(0|0) = u, so that formally (0|0) is also a tautology. To exclude (0]0), one should

require that (a|b) is a {u, 1}-tautology if (a|b) e h('ol ({u, 1)) for we Q, and there is at
least one ye Q such that h,y(alb) =1,

The concept of entailment relation in CL is formalized as follows. We say that (a|b)
logically entails (c|d), in symbols, '

CL
(a]b) k (c|d),

if for we Q, (c|d) e h(:)I(I) whenevcni (a|d) € h(;)I(I), and (c|d)e hc'ol({u,l})

whenever (a|b) € hc'ol({u, 1}). Roughly speaking, (a|b) entails (c|d) if the truth-value
of (c|d) is greater (or equal) than that of (a|b). More precisely,

Theorem 2. The following are equivalent.

CL
@) @bk (c|d),
@) for we Q, hw(alb)shm(cld),and
(i) (a|b) < (cld).

Proof. That (i) and (ii) are equivalent is obvious. To get the equivalence of (i) and
(iii), note that hco (a|b) =1 if and only if ab e o, and hco @a|b) e {u, 1} if and only if
b’ Vae . This can be rephrased. For we Q, abe @ implies cde w, and for
we Q,b" Vae o implies d’ Vce . By Lemma 2 of Section 6.1, these statements are
equivalent to ab<cd and b’ Va<d Vc,or ab<ced and ¢’d<a’b which means
(ii1). (See Theorem 1, Section 3.3). 0

As in the case of CZ’ the logical entailment relation F in CL is monotone. This
follows readily from the fact that & o is a homomorphism. See, however, Chapter 8.

Now to Conditional Probability Logic (CPL). One of the practical motivation for
considering conditional probabilities lies in the construction of Bayesian (causal) networks
(for example, Lauritzen and Spiegelhalter, 1988). For quantifying rules in intelligent
systems with other uncertainty measures, see for example, Dubois and Prade, 1990. As in
the case of PL, if P is a probability measure on R, then P(a|b) = r means that a is
“"time"” in 100 % of the "possible worlds" in which & is "true." A model of CPL is an

extension ?’ :R|R - [0,1] of a probability measure P on R, defined by

P((a|b)) = P(a|b), for P(b) =0,

C ),

C )

®
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As in the case of probability models, P has the flavor of a "homomorphism-like" map.

See also the previous discussion concerning Adams' e-semantics. We write f\’ simply as
P.

If 1 is the only designated truth-value, then (a|b)e R|R is a CPL-tautology if
P(a|by=1 for all P on R such that P(b)#0. The class of CPL-tautologies is
precisely that of unity-type conditionals % of Section 6.1. Indeed, if P(a|b) =1 for all
P, then P(ab) = P(b), for all P, and hence ab=15b (Lemma 1 of Section 2.2), so that
(a]|b) = (ab|b) = (b|b) = (1|b). The converse is obvious. In the same vein, P(a|b) = 0
for all P if and only if (a|b) = (0}|b) € Z, the class of zero-type conditionals in Section
6.1.

I {u, I} is the set of designated truth-values, then (a|b) isa {u, I}-tautology if
(a|b) € hc'o](l) for at least one we £2. This class of {u, }-tautologies also coincides
with % Indeed, let (I|b)e %, b#0. Wehave (I|b)e b, (s, 1)), for we Q since

bb’ = 0. Next, since b0, there is some ye Q such that o € v, thatis, (I|b) € hc-o] .
Conversely, let (a|b) be a {u, I}-tautology. We have a’b =0, that is, b<a.
Hence (a|b) = (ab|b) = (b|b) with b =0, since by hypothesis, there is ¥e Q such that
bey
The following theorem summarizes basic relations among all above concepts, the
proof of which follows simply by inspection.

Theorem 3.
(i) The following are equivalent.

o) (a|b) = (c|d),

B) for we Q, hw(alb) = hw(cld) ,

Y for j=3 or 4, f:,.((a|b), (c|d) is a CPL-tautology (f5,f, of Theorem 3,
Section 6.2).

0) for j=1 or 2, J}((alb); (c|d) and j}.((c]a'), (a|b)) are CPL-tautologies
(.55 of Theorem 2, Section 6.2).

(i) The following are equivalent.

o) P(a|b) = P(c|d) for P suchthar P(b), P(d) #0,

P) for j=3 or 4, (a|b) and (c|d) are CPL-tautologies, or (a|b)’ and (c|d)’
are CPL-tautologies, or j}((alb), (c|d)) is a CPL-tautology,

N (@|b) = (c|d) or (a|b), (c|d)e % or (a]b), (c]d)e Z.
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({iiy Thefollowing are equivalent.

B) for we Q, 'hw(alb) < hm(cld),
Y for j=1 or 2, fj((alb), (c|d) is a CPL-tautology.

(iv) The following are equivalent.

@) P(a|b) < P(c|d) for P such that P(b), P(d) 0,

B) (a|b)s(cld) or (alb)e Zor (c]lde %,

N for j=1 or 2, ]f]z((a|b), (c|d) or (a|b)’ is a CPL-tautology, or (c|d) isa
CPL-tautology.

In C,, bFa if and only if boa=b'va=1 The counterpart of this-

equivalence in CL is that (c|d) ¢ (a|b) if and only if fi(ald), (c|d)) or
fé((a|’b‘), (c|d)) is a (CPL)-tautology (that is, in %). Note that f] and f2 play the role
of material implication on R. The equivalence above follows from Theorem 2 of Section
6.2.

Finally, the logical entailment relation in CPL is defined by

CPL
c|ld) + (a|lb) if P(c|d)<P(alb)

for P suchthat P(b) and P({d) #0.
CPL
In view of Theorem 3, (iv), (c|d) F (a|b) if and only if
(1) (c|d)<(aib), or
2) cd=0,0r
(3 b<a.

We summarize the four logical systems discussed in this chapter.

Classical two-valued Logic (Cz).

Alphabet/Base space: R

Logical operators and relations: (-)", A, V, S, 5, ...
Equational axioms: Axioms of Boolean ring R
Truth space: {0, 1}, designated value: 1

Models: Q = {maximal filters of R}

Tautologies: I
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-Conditional Logic (CL)-

Alphabet/Base: R|R

Logical-operators -and relations: See Chapters 3 and 4: (Lukasiewicz's three-valued
Togic)

Equational axioms: Axioms of abstract conditional space (Chapter 4)

Truth space: {0, u, 1}, designated values {u, I} ’

Models: 7{h.omomojiphjsms ey we Q)

Tautologies: %= {(I|b), b-e R}

Probability Logic (PL)

Alphabet/Base space: R

Logical operators and relations: same as C2
Equational axioms: same as C, -

Truth space: [0, 1] designated value: I
Models: {P : R = [0, 1], probability measures}
Tautologies: 1

Conditional Probability Logic (CPL)

Alphabet/Base space: R|R

Logical operators and relations: same as CL
Equational axioms: same as CL

Truth space: [0, 1], designated value: I
Models: {extended P from R to R|R}
Tautologies: %= { (I|b) : be R\ {0}}

6.4 Additional properties of CPL

Although the concrete base space R|R is sufficient for applications, we present,
‘however, in this section basic properties of CPL in a more general setting. Recall from
Chapter 4 that the abstraction of R|R is an abstract conditional space L in which its

skefotal set L plays the role of R, and L is isomorphic to the concrete realization
L S
(L |L).
As usual, the logical structure of CPL (L) is given by sets of rules (Rul(L)),
deducts  (Ded(L)), models (Mod(L)), semantic evaluations (P(L)=all probabili.,

measures on L*), tautologies ( %(L) where %(L) = {(b|b), be L*\{O}]), and axioms
(Ax(L) = axioms of L as an algebraic structure, together with a set of logical connectives
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(0) ¥ ¥ ¥ ok . .)
f on L |L). Note that, as a base space, (L |L') is a three-valued logical system. :
) s When f (0) is our set of logical connectives developed in Chapters 3 and 4, the

corresponding three-valued logic is Lukasiewicz's. Different choices of f () 1ead 10
3 different three-valued logical systems.

In order to investigate deducts and tautologies, it is neceSsary to be able to identify
certain deducts as tautologies and conversely. Specifically, first deducts here are of the

j form h(o) =g(a) or k(o)< g(x) where « 1is any collection of conditional event
variables and h, g are combinations of logical operators of L. In view of the remarks
U following Theorems 2 and 3 of Section 6.3, we can make the following identifications:

(h(0) = g(@)) +— f,(h(0), g(e)), i=3 or 4,

(h(0) < g(0)) = fi(h(0), g(@)), i=1 or 2,
In the case of R|R, we have,

ﬁ £ ((alb), (c|d)) = e-((c]d) » (a]b)), .)

I where e =abVc’dVbdVb’d’ and 3 is the extended material implication on R|R,
that is, (c|d) 3 (a]b) = (c|d)” V (a]b). Note that f, is Sobocinski's marerial implication.
Using the notation of Chapter 4, it.can be checked that, the same situation holds in

i, the general case. Specifically, on L, we have

£5(B @) = e-(B= c)

L where here

fi * % |k L *

i. e=B8 va v({ea) @-B)).

] Thus f2 is definable in terms of the primitive operators of L. We are now ready to

prove the following.

LY
G-

Theorem 1. CPL is sound and complete.
! Proof. Using the above identifications, any deduct of L (in the form of equality or
Lo inequality) is a single conditional event. By Theorem 1 of Section 6.3, its identification is

a tautology if and only if its corresponding deduct represents a true relation (equality or .)
inequality) which is obvious here.

For completeness, first note that, for aelL, a= frle, ). In particular, if
e % (L), then fz(a, o) is a tautology. Using the identification o< a «— o (as a
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deduct), o istitselfza deduct. D

Remarks

. Suppose that instead of identifying equational axioms and resulting deduct forms
as above, oneé replaces formally all axioms by the corresponding single conditional event
forms.-depending on the: fi's. Thus to completely axiomatizé all relevant expressions,
-avoiding the introduction of external equality, single conditional event forms must be
introduced as axioms characterizing :fz, j;,, in part. Therefore, one can ask whether it is
true that the-added axioms in-combination with-new Rul(L) would yield Ded(L) as
'i@terpréted— in the above identification from the -equational axiom approach. Here, the
-added:axioms are

(forall o, Be L) (Fy(f)(B, o), e-(B3-0)),
(forall o, Be L) (y(fy(e, B, foles B)-fy(B o))

and-new -Rul(L)- is given by using f2, f4 analogonsly as the Jerived inequality (partial
‘ordering) < and equality =:
Forall o, B, ve L,

If (o, B, J;I(ﬁ, y) are deducts, then so is ];.(a, Y, j=2 or 4
j}(a, o) 1is always a deduct, j =2 or 4 (this can also be an axiom).
If fyle, B) is a deduct, then so is f(B, ).

In a related vein, Rescher (1969, p. 66-67) discusses changing Lukasiewicz .%
from a one designated truth value logic {u, I}, making a significant enlargement of thz
class of possible tautologies for the logic. Rescher states that the axiomatization of this
new logic is an open issue.

In view of our results in Chapter 3 and 6.2, toge!’, .~ widh the identifications in L,
and with .% augmented with Slupecki's 7-operator (Rescher, 1969, p. 163), and L

4

augmented with 37, etc., necessar;ly with two designated truth values, the Theorem 1 in
this section seems to point to the possible aciomatization of the logic Rescher considers
via the structure of L. But, more work is needed on this.

2. Abstract conditional spacés appear to be related to "implicative" algebras in
general (for example, Rasiowa, 1974). From an examination of the axioms describing
them, the more specialized pseudo-boolean or quasi-pseudo-boolean algebras may also be
related. The relations need to be also explored to determine any mutual benefit of results.
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3. By comparison of trath values of various conditional operators (Chapter 3) with
Sobocinski's truth tables given in Rescher (1969, p. 70), it follows that: (see also Dubois
and Prade, 1989) Sobocinski's logic with des*enated values {u, I} coincides with the
choice of negation, conjunction and dis . .r.itn, as Schay-Adams-Calabrese have
independently done. Unlike Lukasiewicz's .5 .sun2 operator, Sobocinski's implication
is a material implication formed out of trr, ¥, < 4;(. ) (negation) and ¥, (Schay),
that is, j-+i has truth table given by z;,,(qf(‘ ),(D, D), i, je {0,u,1}. See also
Sobocinski's original work (Sobocinskd, 1957 s “cre it is shown, as an alternative to
Wajsberg's well-known full axiomatizatios - . .%, -- or the associated expanded
axiomatization for Siupecki's extension of .%, via his 7 operator, corresponding to the
special element u Y (or (0]0) in the concrete case of R), see Rescher (1969, p. 155),
that Sobocinski's system can be fully axiomatized. Furthermuore, as a justification for the
Sobocinski's approach, by an analogous extension as Slupecki's, the resulting logic is seen
to also truth functionally operator-complete, being the only other known such system.
(See also Rose (1953), Schalz (1959)). Specifically, note that Slupecki's extension of .f§
being truth functionally operator-complete translates, via Theorem 2 of Section 3.4, into

the fact that (R|R, -, V, ;% , (0]0)) is a truth functionally operator-complete system
relative to all possible extend=3 Boolean conditional operators. Indeed, going back to
<%, since max ("or"), min ("an«.’) and I-- ("not") can all be chown to be compounds only
of ::g , so that (37, u) is sufficient to span operationally all three-valued truth-functional
operators, hence by Theorem 2 of Section 3.4 sgain, the comesponding conditional
operators must, likewise, span all possible extended Boolean conditional operators.
Similarly, the enlarged Schay-Adams-Calabrese systery, comresponding to the enlarged
Sobocinski logic, is truth functionally operator-coraplete.

Thus, via Theorem 2 of Section 3.4, one can now justify the Schay-Adam-Calabrese
approach to conditional eveni algebra as being equivalent to Sobocinski's logic, however,
as noted earlier in Section 3.5, quite distinct from Lukasiewicz's logic, the monotone
bound violations for conjunction and disjunction notwithstanding! See, however, Chapter
8, Section 8.2.

4. Using the technique of Theoiem 2, Section 3.4, we obtain the following
three-valued truth tables for corresponding conditional operators:

(i) Recall from Chapter 4 that (R|R) is a relatively pseudo-complemented lattice
with relative pseudo-comp:’ementation - given by:

(cldy-(alb)y=(abVvc'dvb'd |bvc'dvb'd).
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Its truth-table-is

gﬁ {1 for Gy e ((0, 0,0, 1, O, 1 (ww), WD, U, D)
= Y@ ={ u for G,))= (L, 1)
L0 for Gi)e {(u, 0),,0) .

. ,

C (i) Tn particular, the pseudo-complementation operator of (R|R) is:
BN *
¥ ,
(a|b) =@’bjl)
-with truth table
’qJ(O) = 1’ ‘F(u) = 0= qf(]),
‘which is that of negation in Heyting's three-valued logic (as mentioned in Section 3.5).

(iii) The materinl implication on (R|R), (c|d) 2 (a|b) = (c|d)’ V (a|b), has truth
‘table given by

N 1 for (i’j E {(0: 0)) (0,,u), (09 ]), (u, 1), (I, ])}
Pl wi, D=1 u for G,j, € ((u 0), @ w), U, )
\ 0 for G,)=(1,0).

g (iv) Slupecki's 7-operator (Rescher, 1969, p. 163) has the following truth table
l_‘ corresponding to the constant function u, thatis, y(i) = «, for ie {0, u, I}.
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CHAPTER 7

FUZZY ‘CONDITIONALS -

This chapter'is devoted-to the-extension-of the-measure-free conditioning concept:to

ithe fuzzy case. Motivated by a random:set connection and by the concept-of generalized

indicator function of ‘conditional: events, a form -of membership functions for fuzzy

«conditionals is proposed. It-turns-out that fuzzy conditionals aresinterval-valied fuzzy sets.
‘Syntax comsideratons;. as well as probability qualification of fuzzZy conditionals, are
investigated. Prior to. a formal «development of fuzzy conditionals, basic aspects :of
fuzziness and fuzzy logics are reviewed:

7.1 Generalities on fuzziness

The reader is-referred to Klir and Folger (1988) for an introduction to the theory of
fuzzy sets, and to Zadeh (1988) for an excellent exposition of fuzzy logic and .its
:applications.

Human:communication is based on natural language. Natural language contains fuzzy
:concepts such as "high;" "almost,” "likely," “intelligence,” etc. From-a human viewpoint,
fuzziness is well-understood, and can bé taken as a primitive notion. The uncertainty in
fuzziness is much more complex than that in randomness. Indeed, imprecision,
subjectivity, and context dependency surround each fuzzy label in natural language. The
-imprecision and the context dependency of the above examples of fuzzy labels are clear.
By subjectivity, we mean that individuals might "understand” a fuzzy label in different
ways. In other words, fuzzy concepts are not universal (or objective), as opposed to, say,
-matheématical concepts. This is perhaps the main source of difficulty in trying to formulate
-a- semantic (meaning) information theory. See also MacLennan (1988).

Fortunately, there exists such a "thing" as common sense knowledge which allows us
‘to approxifmate fuzzy concepts in a reasonable fashion. Consider, for example, the
information "the temperature is high." A little reflection will reveal that, underlying this
statement, there are: a universe of discourse X, namely the range of the (variable)
temperature; the variable "temperature” & itself; and the fuzzy predicate a = "high.”
Thus, the above information is translated into "€ is a." For this translation to be part of a
knowledge representation language, we need to model a more concretely. With respect
to X, a is "inside" X. The standard approach to translate this vague idea into
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mathematics is to regard a as a sort of subset of X. Specifically, the imprecision in the
word "high" forces us to consider a as a generalized subset of X, in the sense that
membership in a ranges over the unit interval [0, I] rather than just {0, 1}‘ as in the
case of ordinary subsets of X. Generalizing the concept of indicator functions of ordinary
sets, a semantic modeling of the fuzzy concept a is given by a membership function
1, : X +710, 1], where, foreach xe X, o a(x) is to be interpréted as the degree to which
x is compatible with the meaning of a. Also, it d(x) can be interpreted as the truth value
of the proposition "x is a member of a." Defining this way, a is referred to as a fuzzy
subset of X. (See Section 7.3 for a syntactic approach to fuzzy-sets.)

Now, the subjectivity becomes apparent. For the same a, different individuals can-
assign different maps u . The situation is diametrically opposite to that in random
analysis where each random phenomenon is govemed by one and only one distribution
law. When a random law is unknown, one can try to gather relevant statistical data to

estimate it or to test about it. This is possible since the law in question is unique.

From the above, we see that, to each fuzzy concept a (relative to X), there are
different interpretations of its meaning representation at the mathematical level. This
flexibility is sometimes beneficial. For example, users of a consulting system can input his
their own perception about fuzzy concepts.

At the level of application, a common sense membership function u a might be
desirable. This M g Can be obtained in various ways. For example, by bias of profession,
a statistician might immediately think about getting n . by collecting data, say, in the
form of questionnaires and by constructing p 2 based upon a frequency approach.
Perhaps, this objective approach to constructing membership functions of fuzzy sets has
triggered statements such as “probability theory can handle fuzziness." We emphasize the
fact that, while at the practical level, a probabilistic approach to modeling fuzzy concepts
is reasonable (but not the only one), the primitive concept of fuzziness is clearly different
from that of randomness. In fact, a coexistence of these two notions is useful in Machine
Intelligence. Moreover, fuzziness has the luxury of producing membership functions from
human perception, when statistical data are not available. However, at the membership
function level, there is a specific relationship between fuzziness and probability theory via
the concept of random sets. This relatonship shows that fuzziness is a weak specification
of random sets through the one-point coverage function. (See Section 7.4 for an
application of this relationship.)

It is appropriate here to say a few words about uncertainty. Statements like “all
statisticians agree on the use of probability to model uncertainty” (French, 1990) should be
clarified a litle further. By uncertainty in stadstics, we mean a very specific type
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of uncertainty, namely randomness. It is now well-accepted that, outside of staristics,
especially in AI models, there is a clear distinction between uncertainty and probability
(see for example, Bellman, 1978; Levi, 1973; Neapolitan, 1990). More specifically,
probability theory models one type of uncenainty, while in general decision theory, other
types of uncertainty may surface. Of course, by analogy with randomness, one can try to
use statistical methodologies and techniques to model or to approximate other types of
uncertainty (see for example, Mosteller and Youtz, 1990). But the intrinsic property of
each type of uncertainty remains unchanged (see the comments of N. Chff following the
article of Mosteller and Youtz, p. 16-18). In our view, other non-probabilistic approaches
to uncertainty modeling are not alternatives to statistical tools. Rather they address
different problems in which the uncertainty involved is not statistical in nature (see for
example, Neapolitan, 1990). This is similar to the situation in quantum probability (for
example, Gudder, 1988). The concept of fuzziness, as an example, is best explained in the
context of semantic processing of natural languages. (See again Neapolitan, 1990; also
Levi, 1973). There are various reasons for ad-hoc uncertainty modeling to be atzactive to
desig.. s of intelligent machines. This is a healthy sign in view of AI problems. For the
problem of admissibility of uncertainty measures in expert systems, see Goodman, Nguyen
and Rogers (1990).

So far, we have discussed the problem of meaning representation of fuzzy concepts.
Whatever approaches are taken, we have a collection of membership function p o aE A,
say, in a knowledge base of some system. The problem of interest is how to combine them
in order to extract information for decision processes. This is basically the problem of
using logic as a formal tool in artificial intelligence (see for example, Ramsay, 1988).
More specifically, a formal logic will provide us with a way of constructing a meaning
representation language in which facts, rules and deduction (for inference) can be stated.
In this spirit, we are going to look at logical aspects of fuzzy sets.

7.2 Fuzzy logics

Roughly speaking, fuzzy logic is a knowledge representadon language in which facts
and rules involving fuzzy information can be represented mathematically, and in which
inference with fuzzy data can be described logically. Fuzzy logic is essentially a Jogic that
models the fuzziness in natural language.

To avoid confusion, it is necessary to classify different types of fuzzy logics.
First-order fuzzy logics refer to logics of fuzzy sets in which the truth space is the unit
interval [0, I]. A fuzzy logic is called second-order if its truth space is the space of fuzzy
subsets of [0, 1]. In any case, fuzzy logics are multivalued logics.

A standard first-order fuzzy logic is proposed by Zadeh by specifying semantic




M —-j Avrr—— purT—— m——————y ——— po————
v
ey, AT [T L [P "

—t
AT I LY

e eevesd

ety

——————
. Vi

pre———

t'«-“a H

o
-

St
" ¥

Crine

by
.

b

A -
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-operations among fuzzy subsets of X as follows. The class of all fuzzy subsets of X is
the set of maps FX) = {f:X -[0,1]} from X into [0, I). For fe F(X), the negation
f'of f isdefined to by f'(x)=1-fx). For f, ge FX), the "tuth tables" for the
-connectives "and,” "or" are, respectively

(f A ©)(x) = fI0) A g(x) = min(flx), g(x)),
and

(Fv 8)x) = flx) ¥ g(x) = max(f(x), g(x)).

With respect to the truth space [0, I}, these are Lukasiewicz's logical operatons. Of
course, this standard first-order fuzzy logic generalizes classical two-valued legic. See Klir
and Folger, 1988, Section 1.6, for:details. This approach is semantic-in the sense that the
objects under study are membership functions, generalizing indicator functions of ordinary
subsets of X, rather than their counterparts of ordinary subsets of X. This point will be
made precise in the next section.

When the above logical operations are applied to fuzzy subsets of [0, I] viewed as
truth values in a second-order fuzzy logic, the resulting logic is referred in the literature
simply as fuzzy logic. See Zadeh (1988) for additional detzils. When the truth space is
{0, 1}, one can model the basic connectives "not,” "and,” "or" in various ways, extending
however classical two-valued truth tables of these connectives. For negadon (or fuzzy

complement), one can use any negation operator , that is, any function

N:[0,11-10 1]
such that

(@) NO)=1,NI)=0,

(i) N is continuous,

(1) N is involudve, that is, N(N(x)) = x, Vx € [0, 1], and
(iv) N is non-increasing.

See for example, Bonissone and Decker, 1988.

For conjunction, it turns out that the class of r-norms (see Schweizer and Skiar, 1983)
is appropriate to represent conjunciion operators, where a r-nomm is 2 binary operation T
on [0, I] such that

(1) T is associative,

(i) T is commutative

(iii) T is nondecreasing in each place, that §s, if x<y and u<v then
T(x, 1) £T(y, v), and
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(iv) for x-€:[0, I; T(x, I)-= x.
Note that (iii) and (iv) imply that T(0,x) =0, Vxe [0, 1], in particular, T(0, 0) = 0.
Indeed, Yx € [0; 1], TO:x)STQO, Iy=0. Atnorm T is "Boolean-like" in the sense that

its=restriction to:the vertices of [0, ,1]2 is-a Boolean function, ‘that is, T(x,y) = 0 or I
whenever x and y are O or 1. These functions are used, for example, in neural
networks to model activation functions of the units in the network. See for example,
Wi'lliamss(1986);‘ Here; values in [0, 1] are viewed as degrees of activation. Note that
thé associativity of f-norms is essential in- extending these binary operations to n-ary
operations on [0, 1], n22.
Some:common examples of ¢-norms are-these:

T, (x, y) = min{x, 3},

Ty, y) =2,

T3(x,y)=max{x+y-1, 0}.

For disjunction, the class of -conorms is appropriate. A t-conorm S is a binary
-operation.on [0, I] such that

(i) S is associative,

(ii) S 1is commutative,

(iii) § is nondecreasing in each place, and

@iv) S(0,x)=x and S(I,x)=1,forall xe [0, I].

t-norms and ¢-conorms are dual in the following sense. If T is a t-norm, then
S, Y=1-TU-x,1-y
is a t-conorm, and if S is a r-conorm, then
T(x,y)=1-8-x,1-y) is at-norm.

If the negation operator N is defined by N(x) =1 -x, then dual z-norms and
t-conorms are related to N. Each triple (¥, T, §) defines a first-order fuzzy logic. Thus,
one can speak of fuzzy logics (in the plural).

The t-conorms dual to T I T2, T3 are

SJ(x, y) = max{x, y},
S, ) =x+y-x,
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S§(x, y) =min{x +y, 1}.

The triple (V, T, §) given uy

i.J ' N(x)=1-x,
{‘ T(x,y) =min{x,y}, and .
S(x’ )’) —";jmax{x) }’},

BE B )

(‘; forms the collection-of basic-operations on fuzzy sets. It is interesting to note that some
rr t-norivs admit probabilistic interpretations. For example, if the t-norm T is such that for

{ x$uw and y<v,
f T, y) - 65, ) ST, )~ T, ). *

,: |

then; T is a two-dimensional copula (see Schweizer and Sklar, 1983). That is,

T:00, 1100, 1)
ﬂ satisfies (*) and
{1 2) T(0, %) = T(x, 0) = 0, for xe [0, I}, and
- b) T(1,x) - T(x, I) = x, for x e [0, 1.
{ t-norms satisfy all axioms of two-dimensional copulas (or copulas for short) except
. possibly (¥). In general, copulas are not associative. The probabilistic interpretation of
L’ copulas is this. The distribution function of a random variable & that is uniformly

distributed on [0, I] is

0 for <0
¥ F(x)=(x for 0sx<1
{J 1 for x>1
[ If (€, 1) isarandom vector with joint distribution function

Glx,y) =P(E<x,n<y),
then the marginal distributions are

Fé(x) = P(E<x, < +x) = G(x, +), . )

and
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Fn(y) = P(E S 4, 1S Y) = G+, y) .

If -F £ and Iffn are both equal to F, then the restriction of G to [0, .7]2 is a copula.

Conversely, if T isa copula, then H : R - [0, I] defined by

H(z, y) = TE®), Fy)) -

is a two-dimensional distribution function each of whose marginal distributions is F,
where R denotes the set-of real numbers.

Thus, roughly speaking, a-copula is nothing more than a two-dimensional distribution-
function-on [0, 1)° with uniform marginal distributions on [0, I]. A basic result in
Schiweizer and' Sklar (1983) is:this. If H is the joint distribution function of (&, 7),-then:
there is a copula T such:that

H(x, y) = T(H(x, +=), H(+=, ¥)), Vx,yeR.

The z-norms T], T2-, T3 above are all copulas. For more details, see Schweizer and Sklar,
1983.

7.3 Syntax representation of fuzzy sets
Let X be a set. The power set of X is denoted by 2(X). One can identify 2(X)
with the space {0, ]}X = {f:X {0, 1}} via the bijection

9: (0, 1Y% 2(%)
defined by
o =rln=t:m=1.

Two remarks are in order here. First, if ae 2(X), then qo'l (@=1 a the indicator
function of a on X. If 2(X) represents a collecton of propositions, then it is the base
space of classical two-valued logic or the "syntax part" of the logic. For each x € X, the
map h, : PX) - {0, 1} defined by
lifxea
hx(a) = {
0if xea’

is a Boolean homomorphism, that is, a model of C2. (See Chapter 6). Thus, the space of

indicator functions (0, I}X plays the role of "semantic part” of the logic, in the sense
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that, ;given-2 model h, -or simply x, @ is true or false in x according to whether
1 a(5c)= I -or 0.
‘ ESecond};ihe above bijection ¢ :can bewrittensin a mote explicit form:

fe (o ¥ ¢l x,
withi: £ LIy c X. 1f we define, foreeach t [0, IJ;

AN ={x:f0) 21},
then: for ¢ >:0,
AN =X, Ap=rlm.
‘Conversely, given (g;X), with a ¢ X; then
1 ()= siplte 0, 1]:x€A),

where AO-.’; XA (=@ Vt'> 0, is-such that At ='At(1 a)‘
These facts-are-carried over to the fiizzy-case in-a straightforward manner as follgws.
In the standard- approach, . membefship functions-are used to model fuzzy concépts. Thus,

the "semantic part” of fuzzy logic is FX) = [0; I]X. The "syntax part” is obtained s in
the case. of two-valued logic. Specifically, if fé F(X), then the level sets (or a-cuts) Of f
are, for ae [0, 1], A o ={x:fix)z o). (See for example, Dubois and Prade, 1980.)
The family of ordinary subsets Afa’ o e [0, I, of X satisfies the following properties:

(@) o<p implies Aﬁ <_:Aa,
(i) Ay=X, and

i) for 1€[0,1], NA

=A .
oel & Sup I

The condition (iii) is a form of left-continuity of the map A : [0, I] + P(X) defined
by a~A, inthe sense that, for € [0, I,
limA = nA_=A4-=A4

efa ¢ oa<ca & ¢ ¢

where A_+ denotes IimA_= U A_).
o alo “ osa ¢

It turns out that these three conditions characterize the syntax part of fuzzy logic.
Indeed, let us call a family {A o ¢€ [0, 1T} of subsets of X a flou ser (for example,

Gentilhomme, 1968; Négoita and Ralescu, 1975) if the A a’s satisfy (i), (i) and (iii)

@)
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above. Denote the class of all flou sets 6f X by F.4X), and consider the tap
@ FX) > FLX) defined by o) = {4 a(ﬁ), cce:[0, I1). Note that, a flou set-is in-fact
amap A:[0, 1]+ AX) givenby o - A—Tx , and we write A =:{A o ae [0; 1]} for
simplicity: Thus, two:flou séts A = (A o & €0,1]} and B =B o ae (0,11} are equal
if and only if A’:a = B—fa, for ae [0, I]. Itis easy to check that @ is a bijection:. Indeed,
if off) = ¢(g), then A}a(f) =A a(g), for cce [0, I]. But, obviously for x € X,

f&) =supla:xe A (N},

and-hence f=g; that is, @ 1is one-to-one. To show that ¢ is:onto, we take an- arbitrary
flouset A={A,, ae]0, 11}, and:consider its "characteristic function”

WA ; X S [0; -ljp

where

WA(x) = sup{o:xé€ Aa} .

We dre going to show that A o is a o-level set of Yy Voe [0,1]. If xeA o then- by
construction, I,z(A(x') 2o, Conversely, let x be such that qu(x) 2o and
—I)’C ={B:xe AB}, we have lyA(x) = Sup Ix. By condition (iii), /32] Aﬁ' = A‘VA(X)' By
x
fii), A v, () CA o Thus {x: I;IA(x) 2a)cA o and the result follows.
The logical operations on & .#(X) can be defined in such a way that ¢ is an
isomorphism. For this purpose, conjunction and disjunction are defined as follows. For
A= {Aa’ oe[0,1}}) and B = [Boc’ o e [0, 11},

AANB= {AanBa.aE [0: 1]} ’

and

¥
i

AVE = [AauBa,ae [0, 11} .

: With respect to these operations, Negoita and Ralescu (1975) have established a lattice
R (A, V)-isomorphism between F(X) and F.AX). This can be seen by observing that for
{_ fg:X~1[0, 1], we have for oe [0, I],

(x:f)rg2a)={x:fx,;2e)n{x: g2 a},

L
o an

S (x:f(x)Vg(x)Za}={x.‘j(x)2a}u(x:g(x)2a}.
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The "negation” operator on & #(X) is defined as follows. From
A= {Aa, ae [0, 11},
look at its “characteristic function”
Y 00 =supla:xedy).

‘Consider wé(x)‘ =1]- WA(x), for xeX. Let A’ = {A&, o ¢ [0, 11}, where A('z is the
o-level set of %'1(')’ that is,

Ap={x:y2al
={x:y,0<1-a)
={x:sup(B:xeAg)<I-a
=X\ {x:y,0>1-0)
=X\ ﬁ;lj-a(x Py 2P
=X\A; oyt

The negation of A istakentobe A’ above.

Theorem 1. ¢ is an isomorphism between (F(X), (-)', A, V) and (F LX), (), A, V).

Proof. In view of the previous analysis, it remains only to show that ¢ preserves the
logical operations. The preservation of A and V is obvious. That of (-)’ follows from
the fact thatif () =A = {Aa, e [0, 11}, then f= Yy and from the definition of (-)’
on F.4X). o

More concretely, flou sets can be identified with partitions of X as follows. By ;'1
partition of X we meanamap Q :J -+ 2(X), where J ¢ [0, 1], satisfying

(i) for aeJ,Qa;&@,
(i) for ¢, feJ with a¢B,QanQB=Q),and

(i) vg_ =X
]aeJ o

Noie that a usual partition of X is the range of a partition (map) in the above sense.

As in the case of flou sets, two partitions QU):J IR 20X, Q(z): Ty 2
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are equal if and only if J] =J2 and Qé") =Q((x2),for aeJl.

Theorem 2. Let P(X) be 'the space of all partitions of X, and 1 :PX)~+ & LX) be
defined by 1(Q) = A, where Q :J -+ £(X) and. A o= ﬁ\eJJQ i Then 1 is a bijection.

o .

Proof. First, (@) so defined is indeed a flou set. Since Q 1is a partition, Ao =X.
Obviously, by construction, for o, Be[0,1], if o< then A[S cA, Finally, the
“left-continuity” of A is seen as follows. Let Ic[0,1]. ¥

xeAsupI= Be.kf) QB’

Bsup I
then by monotonicity of A,

xe n(v Qﬁ)'
oel BeJ
BEa

Conversely, if

xe n(vu Qﬁ)’
oel BeJ
Ba
then for e/, there exists PfeJ, B2 o such that xe¢ QB But Q is a partition, so
there is only one value of Q that contains x, say Q Bex) Thus B(x)2 ¢, for ocel, and

hence sup I < (x), implying that x e A sup I

To show that 7 1is onto, we proceed as follows. Let A= {A o %€ [0, I1} be a flou
set of X. By Theorem 1, A is uniquely determined by its characteristic function Vy- Let
JA c [0, I] be the range of Yy that is, ore JA if and only if

(reX: 9,00 =0)=(py =) =¥ (8.
Obviously, J h# @. For Bel A define

0p=Ap\g, = VB NG 1=y B,

where A B = with A, =0. Obviously, Q[3 #0 for feJ 4 Bythe definition

v A
B 7
of JA’ if ¢« ﬁeJA and o=, we have QanQﬁ=®. Finally, if xe€ X, then
Xe (l,lfA = WA(x)) so that x e Qa with o= y() e JA. Thus Q= {Qﬁ,ﬁe JA} is a
partition of X. It remains to check that 7(Q) = A. But
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Ag=vyllo D)= ﬁzaw,;f ®= v 2
2%
This last equaliiy follows from the fact thatif B> o and SeJ 4» then WAI B =9.
Tc show that 1] is one-to-one, we suppose n(Q(I)) = T;(Q(z) ) = A, where Q(I ) and
Q(Z} are two partitions of X, with domains J( D and J(Z) , Tespectively. From the above
discussion, we ‘see that J(]) =J(2) =range of Yy Also, for Pe J(]) = 1(2),

of! =0’ = v ®. o

Remarks. (i) In view of Theorem 2 and the algebraic structure of & .4(X), one can
define logical operations o P(X) so that the bijection 77 1is an isomorphism.
Specifically, if Q:Jc[0, I1~ £(X) is a partition of X, then its "negation” is the
partiion Q' : 1 -J -~ 2(X) defined by Q c,z =0 -0 .This is justified as follows. Let
A =1n(0). Thenfor BeJ, QB =y, = B) . The "complement” of Yy s W/’& =1-y,.
The range of qu is I-J. Thus Q&=(wé-a) for oael-J, that is,
Q&z (WA =l-0)= Q]_a-

For i=1,2]et Q(i) :J(i) - (X} and A(i) = n(Q(i)). The "conjunction" of WA( 1)

and WA(‘?) is VA(]) A WA(Z)' Define Q :range(\;an) A wA(z)) 5 2(X) by
0,= (‘VA(J) A I!,,;1(2) = o). @ is taken to be the “conjunction” of Q(I) and Q(Z).

Similarly, the "disjunction” of Q(] ) and Q(Z) is the partition defined on the range of

V¥V W Vv, =9

(ii) A similar isomorphism can be established between F.AX) and the class of
nested random sets of X. Specifically, by a nested random set of X, we mean a random
element S, defined on the probability space (0, .4 P) with values in 2(X), of the form
S(w) = AU( of where A = {A o O € [0, 11} 1is aflou set, and U is a random variable,
defined on (2, 4 P), and without loss of generality, uniformly distributed on [0, I1]. For
a fixed U, consider

EU) ={Ay:Ae F LX) .
It is easy to check that the map
T: FL0- 20

defined by tA)=A U is an isomorphism. For more details on algebraic and probabilistic

9
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bases for fuzzy sets, see Goodman (1990).

7.4 Fuzzy conditionals
As in'any logic, the concept of fuzzy entailment (or implication) in fuzzy iogic is
essential for inference purposes. Consider a conditional rule of. the form

"If X is a then Y is b",

where a, b are fuzzy subsets of some set £, say, and X and Y are variables taking
values in Q. In the theory of possibility (Zadeh 1978), the po ssibility distribution of X
(resp. Y) is taken to be the membership function g » (resp. /,lb) with the interpretation
that

PossX = w) = ua(co), we Q.

Thus, a conditional rule of the above form can be viewed as a "fuzzy conditional.”

In the past, various approaches to defining conditional possibility distributions have
been proposed. Let f(r,y) denote the joint possibility distribution of (X, 7Y), and f 1
(respectively, f,) denote the marginal possibility distribution of X (respectively, ¥), where

f1(x) = sup fix, y).
y

In Nguyen (1978), the conditional possibility distribution of ¥ given X is defined by
fo|x) = fix, ) max{1, £} 5
and in Hisdal (1978) as

flx,y) ¥ F(3)>fx ),

folx =
{ [f(x, 3), 1] if f(x) = %) .

Bouchon (1987) proposed two types of conditional forms. Let f: Q]-»[O, 1],
g:Qz—;[(), 1]and T be a continuous f-norm.

) (f(x)|g(y))T = sup(t:te [0, I}, T(g(y), 1) < fiy)} with two special cases. First, for
T(x, y) = min{x, y},

I if fix)2gly)
fx) if fix) < g(y).

6w 1g0)7 = {
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Second, for T(x,y) = xy,
()80 = min{fx)/g®), 1}.

(i) Let A :[0,11+RY be a non-increasing, continuous function with h(0) € +« and

K1) = 0. Let Ny(t) = k™ (1]0) - k1)), a negation. Then

(150, = max(N, GO, A}

The approach (ii) is clearly a generalization of the use of material implication when
h(x) = I - x. For other works on fuzzy implication operators, see Yager (1983), Sembi and
Mamdani (1979), Mattila (1986), Smets (1990).

Goodman and Stein (1589) attempted a definition for fuzzy conditioning, based upon
the fuzzy set analogue of the basic characterization of corditional events as the solution set
of a Boolean linear equation, that is, {x:xe R, xb=ab). Specifically, if § 1is a
generalization of Zadeh's classical (min, max, I1-(-)) system over the set of all
membership functions of fuzzy subsets of €2 (called there a semi-Boolean algebra, being a
complete, bounded distributive DeMorgan lattice) with conjunction * and partial order
relation < then, for f, g € S, the conditional form (f]g) is given by

(o) = {: heS, h*g = fig).

This led to, for x e 0,

fx)  if fix) <g(x),

Le)(x) =
roe { [8(x), 1] if f(x) 2 g(x) .

Unfortunately, unlike the Boolean counterpart, closure of functiorally extended operations
did not hold.

In this section, we propose a new approach to fuzzy conditioning using random set
representations of fuzzy set membership functions. Let X be a set, and for simplicity, let
the Boolean ring R be 2(X). For a, b e R, the syntax representation of the conditional
"a given b"is the coset (a|b) = a + Rb’, while its semantic representation (DeFinett,
1964; Schay, 1968) is its "generalized" indicator functicn

oa|b) : X - {0, 1, u}
defined by
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1ifxeab
Pa|b)x) = 0 if xea’d ,
uif xeb’

where u stands for "undefined.”
It is time to say a little more about the symbol u. -In view of Lukasiewicz's
three-valued logic, the logical operations on the truth space {0, I, ¥} are defined by

0/ =1, 1'=0, u' =u;
OAI=0A0=0Au=0, 1AlI=1, uAl=uhu=u;
0v0=0, O0VI=1IVI=uvl=1 0OVu=uvVu=u

For concreteness, u can be taken to be a number in (0, 1), say u = 1/2, so that for x,y €
{0, 1, 1/2},

x'=1-x, xVy=max(x,y), xAy=min(x,y).

Consider now the case of fuzzy sets. Our approach to defining fuzzy conditionals is
based upon a relationship between membership functions of fuzzy sets and canonical
random sets which are induced by uniformly distributed random variables. See, for
example, Goodman and Nguyen (1985). Specifically, let f:X - [0, 1], let (2, .4,P) be
a probability space and U be a random variable defined on it and uniformly distributed
over the unit interval [0, I]. The random variable U 1is thought as a device for
randomizing the a-level sets of f. Thus for xe X,

f&x) = P(o : U(o) < fix)
= P(U () = PW 10, fo).

In this way, f is the one-point coverage function of the canonical random set § U defined
by

S@) = (x :xe X, U@)<fw) =), 1.

That is, f(x) = P(w : x € S(w)), x€ X.
The logical operations among membership functions can be defined using this

relationship. First, the sét complement of U 1 (0, f(x)] is U 1 (0, f(x)]c, and

P 0, 16008 = Pee £, )= 1- P < f00) = 1 - f0),
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r . since U is uniformly distributed. Thus, the negation of f is I-f Next, let f .
‘ g:X-[0,1],and U, V be their corresponding uniformly distributed random variables,
'; both defined on (L, £, P). The joint distribution function of U,V isa copula F (or
more precisely a 2-copula, see Schweizer and Sklar, 1983, p. 82-83).
To define the conjunction of f and g, we look at the set intersection of their random

set representations, namely

ulio, foo1n V210, g,
We have

& P o, oy n vI[0, gl = P e £, Nng v, 1)
= PU W), V<g®) = F(x).

Thus the conjunction f A g is defined for xe X by (f A g)(x) = F(Rx), g(x)).

3 For disjunction V among membership functions, we look at the set union of their
random set representations, namely
8
i vlio, v v, g, ®

We have

P 0, f1 v VA0, gD

g = P10, foon) + PO, goo)
I = P10, 1) n V10, D)
=Paef i, )+ Pace g v, 1)

=Pixef i, g v, )

- ——

= flx) + g(x) - F(f(x), g(x))

4
tmoa

1
-t

= F (), gx)),

-

where F * is the dual copula of F. Of course, the logical system above of membership

functions depends upon the copula F.
The procedure above is carried over to the conditional case as follows. The ‘
conditional counterpart of "f given g," denoted as (f|g), is the conditional event

W0, 71]v110, g))) in the conditional space ¢| & Thus, it is natural to define

.
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flow =P, 1|V, g

= PU<f®)|V < g()

8(x)
when g(x) #0.

For (f|g)(-)-toreduce to ¢a|b)(-) when f= Ia’ g= Ib’ with g, b being elements
of a field of subsets of X, a third value u (undefined) has to be assigned to (f|g)(x)

when g(x) =0.

We consider first a special case in which the copula F is taken to be min, that is
F(x,y) = min{x,y}. We use also the symbol A for minimum. Also, in the sequence
u=1[0,1].

Definition. Let f, g : X - [0, I1. The semantic part of the fuzzy conditional

(flg) : X =10, v {u},
is defined by

fx)Aglx) when g(x) # 0

g(x
flg)tx) =
u when g(x)=0.

As in the case of ordinary conditionals, the abstract symbol u has to be clarified Th'; is
because the range of (f|g)(-) involves u, implying that the nature of fuzziness of if|g)
depends on u. Of course, one can simply imagine that u is an abstract symbol, and
define the logical operations (-)’, A,V on [0, I1v {0, 1}. A concrete candidate for u is
the whole unit interval [0, I]. This choice tums out to be convenient and also consistent
with interval analysis. Taking u as [0, I], fuzzy conditionals are interval-valued fuzzy
sets.

Before proceeding further, let us specify the (Lukasiewicz) logical operations on the
space [0, I]v {[0, 1]}, where real numbers x in [0, I] are considered as intervals [x, x].
Two intervals [a 7 az], [b], bz] in [0, I] are equal if and only if a 1= b I and a, = b2'
The logical operations on [0, I] are

x Ay = min(x, y),
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x Vy = max(x, y).

As in Interval Analysis (for example, Moore, 1966, 1979; Alefeld and Herzberger, 1983),
logical operations on the set I([0, I1) of intervals of [0, 1] are set-extension operations, so
that, using the same notation,

-

[a,b) ={x" :ra<x<sb)y=[1-b,1-a]l=1-{ab].

Note that [a, b}’ = [a, b]. In pariicular
w =001 =[0,1}=u,

[a,blAlc,dl={xAy:asx<bh,c<Ly<d},
=[aAc, bAd]

[a,B1VIc,dl={xVy:a<x<h c<y<d}

=[avVec bVvdl.

Note that ’ is not a true complement (so that the law of excluded middle does not
hold) since, in general,

{a,b]’ Ala, B] 0,
[a.b) Via b)=1.
However, it is easy to check that DeMorgan's laws do hold, that is,
(la, Bl Alc,d)’ =[a,b) Ve, dY,
(a,B0)VIc,d) =[ab) Vicd).

Moreover, both A and V are commutative and associative. Also, the following
distributive laws hold:

[ablA(lc,dlVie 1) =(a bl Alc,d)V(a, b)Alef]),
(2, 6] V(lc,d) Ve, f]) = (a.b] V[c,d}) A (g, B] V [e, f))

This last fact follows by the dismibutivity of A over V on real numbers. Finally, the
order relaton on I({0, I]) is defined by seting [g,b}<[c,d] if and only if
[a, b] = [a, b] A [c, d}, which is the same as a<c and b <d. The smallest and greatest
elements of I([0, I}) are [0, 0] =0, [1, I} = I, respectively.

o
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The logical operations on [0, IJ v {[0, I]} are the restrictions of the above operations
on I([0, ) to'its subset [0, IJu {[0, I1}. Thus, for example, x € [0, I], we have

xA[0, Q=[x,x1A[0 1]=1[0,x],
1v[0,1N=11011A100 I1= [0, 1},
xVOAD ID=[xxVy],...

In particular, these restrictions to {0, 1,u}, with u=[0,1I], form a Lukasiewicz
three-valued logic.
In the sequel, u = [0, I]. For f, g : X = [0, 1], define

f—zﬁ(x) when g(x) # 0

JA: -

8 () = ,
§ 0 when g(x)=0

and let (g20) denote the indicator function of the set {x : g(x) # 0}. We can write

_ JA
(190 = G801 0@ V U )@ A1)

Note that (f—A&) p Can be replaced by (fAg)/(gVvI (g=0)) in the above equality. Also,
multiplication - on I([0, I]) is the set-extension operation of - on real numbers, so
that, for x € [0, I],

xu=x00,11={xy:ye(0,1]}=[0,x]=xA[0,IJ=xAu.
Thus, it is convenient to use the form
(flg) = FVGu=[F,FVG]

for membership functions of fuzzy conditionals, where

= dA =
F Jg )01(g¢0)' G ](g=0)'

Note that G takes only valuesin (0, I}, and if G(x) = 1, then F(x) = 0. |

Theorem 1. Let f}, g]’fZ’ 8¢ FX). Then (fIIgI) = (fz|g2) if and only if there is a
positive function K on X suchthat g; = Kg, and fl hg; = K(fy A 8))-
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Proof. Fir sufficiency, let K be a positive function on X such that g 1 =Kg, and O
f] Ag; =K(fz Agz). From g, =Kg, and X > 0, we see that &; =0 if and only if
8= 0, so that :

(fllgl) = (legz) on (81 =0) = (32=0).

-

Next, on (gl #0) = (g:2 #0),

L fiNg
(fllgl)(x) = ?I——(x)

K0, (xIgyx)
- 8 ](x)

_forey

% x)

= (fz Igz)(x) .
For necessity, suppose that (f; lg P=0 |g2). Define .

8;(x) o= o
K= | B O PO =6r =0

c >0 on (g2=0)=(g1=0).
We then have 8; =Kg2 on X and

f]Agl szgz
-—g]—'=-§2——' on (gl¢0)=(g2¢0)

implies that
|
f] A =§3(fz A82)=K(le\82)-
On (g;= 0) = (g, = 0), we always have

g1 hg;=K(fy Agy). o

As in the case of fuzzy sets, let us specify the syntax representation of fuzzy sets, let us
specify the syntax representation of fuzzy conditionals. First, let's look again at conditional ‘
events. For a, b e P(X), we have seen in Chapter 3 that (a|b) is equal to the interval
lab,b-d] in 2P(X), where b-a=0b"Va (materal implication). Thus, (a|b) is
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equivalent to {ab,b~a} orto {ab,b-a,X}. A={ab,b-a, X} can be viewed as a
finite flou set with characteristic function of the form

lif xeab
1V (t)(x)= 0 if xea’b
A . p
t if xeb

for some t e [0, 1], where in flou set form,
® .
AV = [Aa, o€ [0, 11}

with A0=X,Aa=avb' for 0 < @ <t, and Aa=ab for t< o<,
For each te¢ [0, 1], define q)t(alb):X-»{O, 1,1} by

1l if xeab
<pt(a|b)(x)= 0 if xea’d
t if xeb’

then, since u = [0, 1], we have, for x € X,
Wa|b)x) = {@a]|b)) : e [0, 11).

That is, the generalized indicator function ¢{a|b) is precisely the collection of real-valued
functions (pt(a, b), te [0, I].

The situation is similar in the general case. Let f, g € F(X). Define, (f| g)t : X0,
I] foreach re [0, 1] by

f—gg-(x) when g(x) # 0

(f]8),(0) =
t when g(x)=0.

Then (flg) = ((flg), and re [0, 11). Let A® be the flou set associated with (f]g),.

Then the syntax representation of (f|g) is the family of flou sets {A(I) :te [0, 1},

We turn now to logical operators among fuzzy conditionals. Since fuzzy conditionals
are interval-valued fuzzy sets, operations among them are defined pointwise, that is, by
logical operations on I([0, I]). First,

1'%&(1) on (g#0)
flg) ) = I-(flg)x) =
1-[0,1]=[0,1] on (g=0).
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228 Fuzzy conditionals

Now, .

7 JxIhe(x) _ g(x)- f(x)/\g(x) = ((g(x)+(x))VO)Ag(x)
gx) = glx] 8(x) :

Thus (f 18)" = ((g - /) V-0|g). The situation for A and V is not that simple, in the sense
that compound fuzzy conditionals are arbitrary interval-valued fuzzy sets. Using interval
representations,
Frle) A (518 = IF;, Fy VG A [Fo, F5 v Gy
=(F; A Fz) v (((Fl v GI) A (F2 v Gz))u),
and
(fllg.l) v (legz) = iF] VFz» (Fl v G]) v (F2 v Gz)]

Thus, compound fuzzy conditionals are of the form fvgu=[,fvg] with

5, g :X-10,1). Simple fuzzy conditionals are of very special form, namely g takes only
valuesin {0, I}, and when g = I, we have f= 0. However,

Theorem 2. If f, g : X~ [0, 1], then fV gu=a-(e|h) VP where o, B, e, h:X [0, I].

Proof. Let
ox) = g(x) v 1(g=0)(x).

Then
fygu=alviu
= ol )V gu) Y L guy®
f
= ol 1o )V L gugy V-1 gugy
—a(—ll(g 0)) Vf](g;eo) o
Remark.

An alternative approach to defining logical operations among fuzzy conditionals is this.
Instead of using arithmetic of intervals, we will explore the connection between fuzzy sets
and random sets. Let f;, g;:X-1[0,1], i=1,2 with comesponding uniform random
variables Ui and Vi’ respectively, all defined on a probability space (Q, ., P). Let F
be the joint distribution function of (U I V}, U, V,), thatis F isa4-copula. Let * be
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a-binary operator on £ | .6, for example; conjunction or disjunction. The corresponding
operator among fuzzy conditionals is determined by

;1 8,7%(5 | 2,0(0) = P((a|By*(c| D)
where '

a=U 0. £ b=v;'10, ¢,

c= U 0.0, d= V[0, g,000.

Now (a|b)*(c|d) = (&|P), say, so that

;12 )4, |80 = P(r| By = H4aB,

in which P(af) and P(f) can be computed in terms of F, the fi's, gl.'s, and x. If we let
P(of) = h(x), P(B) = {x), then for x e X,

() 18 )"0y |8 @) = (k] 2)(2):

To illustrate this approach, consider negation and conjunction in the case where F is
min. The situation for negation is simple, involving only a unary operator. Let

f,g:XA[0,1] with corresponding U, V. Let a= U'I[O,f(x)], b= v [0, g(x)] for an
arbitrary x e X. Then (a|b)’ = (a’|b) and P((a|b)’) = P(a’|b) = I - P(a|b), so that
f1g) =1-(flg).

For conjunction with F = min, using the same notation in the procedure described
above, we have

(a|b)(c|d) = (abla’b V c¢'d V bd),
and

P(abcd) = min{f;(x), g ;). £,(x), 8,()}
P@’'bvec’dVvbd)y=Pl@a'bVc’'dV abed)

= P(a’bVc’d) + P(abcd),
P(a’bVc’d) = P(a’b) + P(c’d) - P(a’bc’d),

P(a’b) = P(b) - P(ab)
= gJ(X) - Min[fj(x): 81(75)]»

P(c’d) = gz(x) - min(fz(x)r gz(x)}:
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P(a’bc’d) = P(bda V c)’)

= P(bd) - P(abd V cbd)

= P(bd) - (abd) - P(cbd) + P(abcd)

= min{g,(x), g,()} - min{f;(x), 8;(x), 8,()} - min{g ;(x), f,(x), g,(x)} + Plabed).

Thus,
P(a’bVc’dV bd) = g;(x) - min{f;(x), g; ()} + g;(x) - min{fy(x), 8,(x)}
- min{g;(x), 8,(0)} + min{f;(x), g;(x), 8,(x) + min{g,; (), £,(x), g5(x)}.
Therefore,
(F;lgp A (ol gD = (B H(),
where

h(x) = min{f;(x), g;(0), £,(0), 8,0}
Ux) = g;(x) - min{f;(x), g; ()} + g,(x) - min{f,x), g,(x)}

- min{g ;(x), go(®)} + min{f;(x), g;(x), 8,0} + min{g ; (), £,(), 85(x)}.

7.5 Probability qualification

If we view fuzzy conditionals as uncertain rules in expert systems, then, according to
fuzzy logic (Zadeh, 1988), there are three possible modes of qualification of these rules,
truth-qualification, probability-qualification, and possibility-qualification. In this section,
we address only the numerical aspect of probability qualification of fuzzy conditionals; we
lay down the mathematical framework for semantic evaluations of fuzzy conditionals in
Probability Logic. Other modes of qualification as well as fuzzy probabilities are not
treated here.

Let (X,R) be a measurable space. At the semantic level, following Zadeh (1968), a
fuzzy event is defined to be a measurable map from X to [0, 1] (where [0, 1] is
regarded as a measurable space with its induced Borel o-field). A probability measure P
on (X,R) isviewed as a model, and [|-[|p denotes the semantic evaluation map in the
model P. Thus, if f is a fuzzy event, then , as proposed by Zadeh (1968), ||f]| P is
defined as follows. Let & be a random variable with values in X, having P as its
probability law.
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Wllp = EpR®) = jXﬂxw(x).

Next, we look at the case of ordinary conditional events. For a, b e R, the s&ntax part
(a|b) was derived (Chapter 2) in a compatible manner with conditional probability. That
is, if P 1is 4 probability on R, then P((a|b)) = P(ab)/P(b), when P(b)> 0, is
well-defined. Thus, the probability evaluation of its "generalized" indicator function (or its
semantic part) ¢{a|b) is taken to be P(a|b), that is,

lloald)]|p = Pa]b).

This evaluation of @{a|b) with respect to a model P is sometimes referred to as a third
value for ¢{a|b). See Chapter 5, also Coletti et al., 1990. Now, with the notation of
Section 7.4,

®alb) = {pla|b) : re [0, 11},

and E P(pt(alb)(é) = P(ab) + tP(b”). It1is easy to check that P(a|b) is the fixed point of
the map

te [0, 11 p9,(a |6)(©).

This observation suggests an extension of Zadeh's concept of probabilities of fuzzy events
(Zadeh, 1968) to the case of probabilities of fuzzy conditional events. Specifically, let f, g
be two fuzzy events. From Section 7.4, we have

(1) = ((lg), s e [0, 11).
Define ||(f|g)[|p to be the fixed point of the map -+ Ep(f|g)(6). Then
Ep(f|8) () = Ep((f18)(5)[8(5) > 0)P(g(&) > 0)
+ Ep((f8)9)]8() = 0"(¢(®) = 0)
= Ep8(®)12®) > OPE® > 0) + Pg(®) = 0).

Thus the fixed point is

EpiE1s >0,

and

112l = Ept2Ec@) 182 > 0).
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Obviously, this evaluation generalizes those in the two previous 'special cases. Since
A :
(fle) = (Lg')ol(g>0) v I(g_o)u ’

(flg) takes values in [0,1] on (¢>0)(on (g=0), (flg) = u), namely J.‘A& This
observation is used to define evaluation of compound fuzzy condmonals as follows

A compound fuzzy conditional is of the form fV gu where f,g:X-10,1). Since
fvagu=[ffv g]‘, we see that fV gu takes valuesin [0, I] onlyon (g<J), thatis,x € (g
<f) if and only if (Vv gw)(x) = flx) € [0,1]. Thus, by analogy with the simple fuzzy
conditionals case, we define-

IV gullp = Eplflg <.

This evaluation is well-defined, since if. fV gu=hVku then [f,fv gl=[h, AV K]. Thus
f=hfvg=hVkand (g<f) = (k<h). Hence EP(fIgSj)=Ep(h|kSh).

7.6 Iterated fuzzy conditionals

The topic of iterated conditioning will be treated in Section 8.1 of Chapter 8, from a
syntactic viewpoint. Here, to be complete, we discuss this concept in the setting of fuzzy
sets, but from a semantic viewpoint, that is, using generalized indicator functions of
conditional objects rather than the objects themselves. Let R be a field of subsets of a set
X. For a, b e R, the generalized indicator function of (a|b) is defined as

o(a|b) : X - ([0, ID),

where I([0, I]) denotes the set of all closed sub-intervals of [0, I, equipped with
arithmetic of intervals, and

1 for xe ab
Pa|b)(x) = 0 for xea’d
u=/[0,1],for xe b’ .
@(a|b) is a special fuzzy conditional, since @{a|d) = (I ,|1p) =1, A1, =1, on b
andis u on b’ . Also,if
1 for xe ab
¢falb) =< 0 for xea’b
t for xe b’
then

o(ald) = {(pt(alb) cte [0, 11).

o
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Each  ¢@fa|lb) can be viewed as an element in  ¢(a|b). Observe that
<pt(alb)-1 b= ]a~1 b for te[0,1). Thus, as a natural approximation, we can view
®alb) as '

{f-X-10,1 :f']b:: 1a~1b}.
In a similar way, for f, g : X =+ [0, I] one can approximate a fuizy conditional (f|g) as
{(h:X2[0,1]1:h-g=fg).

The above heuristic considerations lead to an approximate form of iterated fuzzy
conditionals. For fi’ 8; :X=-100,11,i= 1,2, define

V(7 le Pl le) =ng{(fIg> : (f18)(fyl89) = (F;le PiFy 85},

where operations among fuzzy conditionals are those in I([0, I]). Note that by a union of
the form U {(f]g)}, we mean the union of set (f|g)(x) which are either {t}, for some

te [0, 1, o;'g[O, I, foreach xe X. In other words, V isamap from X to 2[0,I]. The
roain result of this section is the proof of the fact that V is an operator on the space of
fuzzy conditionals.

For this purpose, we proceed as follows. Consider the equation

(flg)(legz) = (fjlgl)'(legz) @
Let h ='%g— on (g > 0), we write
fle) = hl(g>0) v u1@=0).

f:Ag.
Similarly, let hi = l—g—L on (gi > 0),i=1,2. The equaton (1) is rewritten as

i
(h11(81>0) v ul(g1=0))(h21(g2>0) v "1(g2=0))' 2)
After multiplying out terms, we get ‘

aVPu=1yvVé, 3)

where
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B=hlos0)(g,=0) Y 121 (5,500 (=0 ¥ Yg=0)'(g,=0
&= hilig 500! (8,=0) ¥ 72118500 (8;=0) ¥ '(5;=0)"(8,=0r
Since (3) is precisely

[o, aVBI=[%7VE,

‘we have
a=v-and aVB=yVE @

To solve (4), we consider the partition of X 'consisting of (g2 =0), (32 >0, h2 >0) and
(gz > 0, hz = 0).
On (g2 = 0), (4) becomes

Thus,

flg) = hl(g>0) v "1(g=0)
= (1l 500 ¥ Lg =00 -k >0 Y L -hp)g =0) ©

since on (g > 0), (5) yields

h=hilg >0V 1(g,=0y
andon (g =0),

1= hjl(g]>0) v 1(g1=0)'
This is equivalent to A 1= I org, = 0, that is, to

- h})(gl) = 0.

On (g2 > 0, h2 > 0), we have from (4) that

hes0y =M L 120
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and-

From (7)we see that (g=0)=(g 1= 0). Indeed, if ¢ I(x) =0, then g =0.
Conversely, if g(x) =0, then either g ](x) =0 or h I(x) = (0. But the case where
g 1(:;) >0 and A I(x) = ( is impossible in view of (7).

Next,on (g>0), wehave h=h ;- Thus

On (g, >0)n (hy = 0), (4) supplies no constraint on f and g, so that (flg) isa
solution. But for x € X,

v {(fle)x)} = [0, 1] = u
5.8
Thus, we have

Theorem 1. For fi’ 8;° X-[0,1,i=12,

W6 116 le = Cfly 1 11
]lgz I(legz) - T)o (C¢0)I (D;#O)’

where
C= g]hzgz v 81(1 - hI)l(gZ =0),
D=ghyg, Vg, -h)h, V], _;)
17262 "o /N2 (32"0)
and
f:hg:
h__—_-.L__E.'= .
; gi,l 1,2 o

As an example, consider f] = ]a’ f2 = ]c’ 8= ]b’ &= Id' We have

(C#0)=bcdV blab)'d’,

(D #0) = bcd V blab) (cd ¥ d’) = bla’d’ V cd),
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[ ; so-that

. V(gp(a|b)| plc]d)) = (labcdllb(a’d’Vcd)) = @{abcd|b(a’d’ V cd))
[ ) = @(ab|b(a’d" ¥ cd)).

[, This should be compared with Theorem 3 of Section 8.1 of Chapter 8.
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CHAPTER 8
ITERATED CONDITIONING AND MISCELLANEOUS ISSUES

This last chapter is concerned with some topics related to measure-free conditioning.
In Section 8.1, an investigation of iterated conditioning is carried out. In Section 8.2,
some aspects of non-monotonic logic on conditionals are discussed. In Section 8.3, we
generalize some of the results concerning operations on cosets of Booleans rings to
commutative von Neumann regular rings. Finally, in Section 8.4, we close by suggesting
open problems for future research.

8.1 Iterated conditioning

In Section 7.6, we have touched upon the concept of conditionals of conditionals in
the fuzzy case. In this section, we return to the Boolean case and formulate the basic
concepts of higher-order conditioning. This investigation of iterated conditioning is a first
attempt. We hope that this will trigger further work in this area.

By Lewis' Triviality Result (Chapter 1), there is no binary operation ¢ on a
Boolean ring that is compatible with conditional probabilities. That is, there is no binary
operation ¢ on R such that for all @, b € R, and all probability measures P on R such
that P(b) # 0, the equation

P(a 0 b) = P(a|b) = P(ab)/P(b).

holds. Thus, to define conditional events compatible with probabilites, one is forced to go
outside R, and we enlarged R to R|R for that purpose. Now, having the conditional
space R|R, we wish to consider conditionals on it. But, again, R|R wili not accomodate
conditionals between its elements that are compatible with probability. More precisely,
the situation is this.

Theorem 1. (The Triviality Result for R|R) Let R be a Boolean algebra with at least
sixteen elements. Then there does not exist a binary operation ¢ on R{R such that

P((a|b) 0 (c|dy) = El(alb)(c|d])
P(c|d)

forall a, b, c, de R and for all probability measures P on R such that
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P(b) 20 = P(c|d).

{ Proof. If R is not atomic, then there exist four mutually disjoint non-zero elements
I of R. Justtake a € R where a has no atom, and let a > b > ¢ > d, all non-zero. Then
L d cd’, bc’, and ab’ are four such elements of R. If R is atomic, let @ be an atom of

R, b beanatomof a’,c beanatomof (@aVbh)’,and d beanatomof (@VdVc).
This is possible else R has fewer than sixteen elements. Thus, in any case, R has four
mutually disjoint non-zero elements 7, s, 7, and u. Now, by the Stone Representation
Theorem, R isa subalgebra of £(§2) for some set £, and so viewing R, let v, w, x,
and y be elements of r, s, 17, and u respectively. Define a probability measure £ on
P(Q) via

.
exiy

(]

roateny ..-—--q,

| SUSEy

P(v)=0.1, Pw)=Px)=P@y)=03.

e
A emesna

Then, P is a probability measure on R. Let

r, a=r\Vs,

"4
b=rvsyvi,
c=rVrs,

o~y
L.

d=rvsvivu

{'f A solution
_ &1) = @a]b) ¢ (c|d)
l _ so that
i Pealy) = FalB))(c1d)
- P(cla)
{‘ yields
; P(x]y) = Placla’bVc’ dvbd)
[= P(c|d)
g ____ P(ac)P(d)
ry P(a’bVc’ dvbd)P(c)
= ___ (0.0y)
£ P(V(rve)V(rVsVr))(0.6)
' 0.1 _Px)

" (0.7)(06) P(y)’

taking x S y. But thereis not such a pair x,y € R. 1]




T

! -
anpesanad W mavemnd

ey
D |

[T
P

[T T

..—-«o\l ¥ e resmnd oy
P LA [ ‘-—l

posbann
[N

. . e poosarosn
| R . ' - C...‘-Hvl [V

Iterated conditioning 239

There are some special cases for which solutions exist.
(@) For b=d=1,wehave (x|y) =(a|c) e R|R.
(ii) More generally, for b = d, we have
P{(a]b)(c|b))/P(c|b) = P(ac|b)IP(c|b) = P(abc)/P(bc) = P(a|bc),
so that a solution (x|y) is (a|bc).
(iii) Generalizing in a different direction, letting only d = 1, we have
P[(a]b)c]/P(c) = P(abc|b V ¢")P(c) = P(ac)/P(c)

if ¢<b,sothat when c<b, ((a|b)|c) = (a]c). In particular, ((a|b)|d) = (a|b).

The interpretation of all the above is plausible from a rule deduction viewpoint.
(See Dubois and Prade, 1990, and also Calabrese, 1987). For iterated conditionals of
conditionals with the same antecedent (that is,.b = d), see also Pfanzagl (1971, p. 200). In
this case, for fixed b e R, iterated conditionals of the form ((a|b)|(c|b)) are nothing
more than conditionals on the (quotient) Boolean ring R|Rb’. The operations on the ring
R/Rb’ are

(alb) + (c|b) = (a + c|b),
(ab)-(c|b) = (ac|b),

a|b)’ = (a’|b).
Thus

((a] D) | (c|)) = (a|b) + (R/RB")(c|b) & ((RIRD")(RIRL’)(c’ |b)).

We are going to show that ((a|b)|(c|b)) can be identified with (a|bc) € R|R(bc)’. For
this purpose, consider the map

A:R!Rb’ -+ R|R(bc)’
defined by

A(x + Rb’) = x + R(bc)’.

First, this map is well-defined. Indeed, changing x to x + rb’, the image under A is
x+ rb’ + R(bc)’. But rb’ b’ V¢’ sothat rb’ e R(bc)’, that is, rb” + R(bc)’ =
R(bc)’. It is obvious that A is a ring homomorphism and is onto. It remains to verify
that the kernel of A4 is precisely the principal ideal (R|Rb’)(c’b) of R|Rb’. We have
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M(x + Rb")c’ + Rb")) = Mxc’ + Rb’) = x¢’ + R(bc)’ = R(bc);

(since xc’ S (bc)’), which is the zero in R/R(bc)’. Thus, ((R/Rb’)(R/Rb’)(c’ |B)) is
isomorphic to R/R(bc)’. ' a

However, the identification of ((a|b)|(c|b)) with (a|bc) does nothing toward
getting a general definition of conditionals for conditionals. Of course, one can argue
from some logical viewpoint, and then define, in an ad-hoc or plausible manner, an
iterated conditional (a]b)|(c|d) in such a way that the above intuitive (and compatible)
special cases hold.

Our approach here is this. We cannot proceed in exactly the same manner as we did
to get R|R from R. The space R|R consists of all cosets of all principal ideals of R.
The space R|R is not even a ring, and so we cannot make a totally analogous
construction. However, in R, a coset a + Rb’ = {a + 1B’ : r € R} is the set of all
solutions x to the equation xb = ab. In R|R, we can carry out the construction
analogous to that. So we are led to the following definition.

Definition 1. I'or (a|b), (c|d) € R|R, the iterated conditional ((a|b)|(c|d)) is the set

{&x]y) : x])c|ad) = (a]b)c|d)}.

The collection of these sets is denoted (R|R)|(R|R) and is called the space of iterated
conditionals.

Now ((a|b)|(c]|d)) is not empty since it contains (a|b) as well as ((a|b)(c|d)).
In the case of ordinary events, the set {x :xb =ab)} isthe interval [ab, aV b’). Thatis,
solutions x to the equation xb = ab are exactly those x such that ab<x<aVvbd’. So
a conditional event is also an interval in R. This was discussed in Chapter 2. One might
expect that ((a{b)|(c|d)) is an interval in R|R under the partial order we defined by
(a|b) S (c|d) if (a|b) = (a]|b)(c|d). In fact, R|R is a psendo-complemented lattice with
respect to this order, as expounded upon in Chapter 4. Now ((a|b)|(c|d)) does have a
smallest element, namely (a|b)(c|d). Furthermore, this is the counterpart to the smallest
element ab in the interval [ab, b” V a]. However, various counterparts to b’ Va =
b -+ a (material implication), such as (a|b) V (c|d)’ and Lukasiewicz's implication are
not solutions to (x|y)(c|d) = (a]b)(c|d), that is, are not in ((a]b)|(c|d)). However, R|R
has a property that we have not yet exploited. It is relatively pseudo-complemented. 1t
turns out that b = @ is a relative pseudo-complement in R of b with respect to a
since x < b’ Va if and only if xb < a. (See the definition below.) So there is another
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counterpart in R|R to b’ V g, and it is that element that is a maximum solution to
x]y)c|d) = (a|b)(c|d) and guarantees that ((a|b)|(c|d)) isindeed an interval in R|R.

Definition 2. A lattice L is relatively pseudo-complemented if for every a, b € L, there
is an element a*b € L with the property that x < a*b ifand only if a Ax<b.

Clearly there is only one such a*b, and it is called the })seudo-complement of a
relative to b. The element a'h satisfies a A a*b < b, and is the supremum of the set of
all such elements. The relative pseudo-complement of a with respect to 0 is called the
pseudo-complement of a, and that notion played an important role in Chapter 4.

The relevance of relative pseudo-complements to our problem is this. Suppose that
R|R is relatively pseudo-complemented. Then applying that property to the pair of
elements (c|d) and (a|b)(c|d), R|R has an element e|f = (c|d)*((a]|b)(c|d)) such that
elNc|d) < (a|b)c|d) and such that (x]y) < (e|f) if and only if (x|y)(c|d) <
(a|b)(c|d). But there are solutions to  (x|y)c|d) = (a|b)c|d). Hence the
pseudo-complement (e|f) of (c|d) relative to (a|b)(c|d) satisfies (e|f)(c|d) =
(a|b)(c|d). Thus if

&|y)cld) = (a]|b)(c|d)
then
(a|b)c|d) S (x]|y) < (elp.

Conversely, if

(a|b)c|d) < (x]y) < (e[,

then
(a|b)(c|d)(c|d) = (a]b)(c|d) < (x]y)(c|d) < (e]f)(c|d) = (a]b)(c|a),
and so
x[y)c|d) = (a|b)(c|a).
Therefore

(@]|b)[(c|d) = (a]b)(c|a), (c|d)*(a|b)(c|d))].

Thus we need two things. We need that R|R is relatively pseudo-complemented, and we
need a formula for the relative pseudo-complement (c|d)*((a|b)(c|d)).
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Theorem 2. R|R is relatively pseudo-complemented, and the pseudo-complement of
(a|b) relative to (c|d) is

@|by*(c|d) = (cdVa'bVb’'d’ |dVa'bvb'd’)

Proof. Lete=cdVa’bVb’d’,and f=dVa'bVb'd’. We need that (a|b)(x|y)
<(c|d) if and only if (x|y) < (e]N. Now (a|b)(x]y) S (c]d) ifand only if

(ax|a’b vV X'y ¥ by) S (c|d)

if and only if
ax(@’bvxyvby)<cd
and
c’'ds (ax)’(@’b v x'yV by),
if and only if
abxy <cd
and

c’ds@ vx)a’'bvxyvby)=a’'bVxy.
So we have that (a|b)(x]y) < (c]|d) if.and only if
abxy<cd and c’d<a’bvxly.
Conversely, (x|y) < (e|f) if and only if '

xysef=(cdva’'bvb’d’Ydva'bvb'd’)
=cdVa'bvb'd,
and

x'yze'f=(cdva’'bvb'd’)Y dva'bvb'd)
=@’ vd')aVvb)bVvaydVva'bvb'd)
=(c’vdYaVb')dVa’'b)
=(c’"vd')ad Vv b’'d)
=(ac’'dVb’'c’d
=c’dlaVvb’)

Thus we have (x|y) < (e]f) if and only if
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xy<Scdva’'bVvb’d and xy2c'davb’).
We need

xy<$cdVa’bvb'd and x"y2c'davbd’)

if and only

-

abxy<cd and c’d<a’bvxy.

But x’y2 c"d(a‘v b’) implies that

abvx'y2 a’bVc’davb’)2c’d,
and c¢'d<a’bVvxy implies that

c’davd’) S@bvxy)aVvb)=xy@avb’)<x’y.

From xy<Scdva’bVvb’d’ we get

abxy < ab(cd V a’b V b’d’) = abed,
Finally, abxy S c¢d and c¢’d<a’bVx'y imply

xy < (ab)’cd
and
c’davb)s@bvxy)avb’)
=xXylavb)sx'ysx’' vy’,

from which we get

x'Vy 2ablc’ vd’)
and

x'vy 2c¢’davb).
Thus

x'Vy 2ab(c’ vd)vc'davb).

But xyscdvVa’bvb’d’ isequivalentto
x’Vy 2" vd)avb)bVd

=ab(c’ Vd')Vc'daVb). g
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E The relative pseudo-complement (a|b)*(c|d) can be written in an apparently
r simpler form, namely

1} (a|b)(c|d) = (cdva’bvb’d’|a’ Vb’ vd).

" One should note the special case (c|d) = (0]1). We have -
r . (a|b)*(0]1) = (a|b)* = (a’b| D),

. the pseudo-complement in R|R of (a|b).
{-] The relative pseudo-complement of (a|b) with respect to (c|d) is a form of an
"implication operator”

; @|b)» (c|d) = (a|b)*(c|d) = (cdVa’bVb’d’|a’ Vb’ Vd)
"1 on R|R extending material implication on R. It can be viewed as the counterpart of
: material implication in R|R. The truth table of (a|b) 2 (c|d) follows. Let x = (a|b)
1 and y = (c|d).
L §
. X3y

[ Xy | o1 11 oo
o [ 0T 0 01
i nrofnon

010 11 o1 11

(. Corollary 1. ((a|b)|(c|d)) = [(a]B)|(c|d), (c|d)*((a|b)(c|d))]

= [(a|b)|(c|d), (abecd V c’dVad’ vb'd’ |bVc'dVad’ Vb'd)).

L Proof. We need only to show that

(c|d)*(a|b)c|d) = (abcdVc’dVad’ vb'd’|bVc'dVad’ vb'd’).

£y Let e=a’bVc’dVbd By the formula in Theorem 2,

(c|d)*((a|d)(c|d) = (c|d)*(acla’bV c’d V bd)
=(aceVc'dvde’|leve'dvde’)
=(abcdV c’dVad Vb'd’ |a’bVc'dVbdVad'vb'd’)
=(abcdVc'dVvad Vb'd' |bVve'dVad vb'd).
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The right hand endpoint
(c|d)*((alb)(c|d) = (abcd Vc'dVad’ Vb'd’|bVc'dVad Vb'd’)
can also be written in the somewhat simpler form
@ Vc'dVad Vb'd' |bVc’ V).

Corollary 1 gives a way to identify R|R with a subset of (R|R)|(R|R). An easy
calculation shows that (a|p|d|D) = [a)b), (a]b)]. Thus the map
(a|b) = ((a|b)|(Z]1)) is one-to-one.

Corollary 2. ((a]|b)|(c|d) = R|R)(c|d)*((a|b)(c|d)) V (a]b)(c|d).
Proof. Anelement (x|y) in the interval [(a|b)|(c|d), (c]d)*((a@|b)(c|d)] is
x|y)(c]a)*((a]b)c]a)) V (a]|b)c]d),
which is in
R|R)(c|d)*((a]b)c|a)) V (a]|b)c|a).
The converse is equally clear. o
Now ((a|b)|(c|d)) is an interval in R|R, and it would be nice to have simple
criteria for the equality ((a|b)|(c|d) = (e|)]|(g|A). Two conditional events (a|b) and
(c]d)) are equal if and only if ab =cd and ¢ =d. The analogous condition here is that
(a|b)(c|d) = (e|H(g|h) and (c|d) = (g|h). This does not scem to be the case, however,
and the best we can do at the moment is to say that (a|b)(c|d) = (e]PH(g|h), and
(c|d)’((a|b)c|d) = (g|h)*((e]N(g| ), that is, that the end points be the same. For

example, there does not seem to be a way to recover (¢|d) from (a]b)(c|d) and
(c]d)’((a|b)(c|d)). This precludes making the definition

P((a|b)|(c|d)) = P((a]|b)(c|D)P(c|d)
since (c|d) is not available. However, in the conditional case,
P(a|b) = P(ab)/P(b) = P(ab)/(I + P(ab) - P(a V b")).
This last expression affords a way to define P on (R|R)|(R|R), namely by the equation

P((a|b)|(c|d)) = P((a]b)c|a)/ - P(a|b)(c|d) + P((c|d)*((a| b)(c]|d))))-
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Furthermore,
P(@|D)|U D)= P((a|b)I| I/ - P(@|B)T| 1)) + P(I | 1)*((a| T | 1))))

= P(a|b)/I - P(a|b) + P(a|B)) = P(a|b),

and this definition extends the definition of P on R|R, viewing R|R as embedded in
RIB|RIR) by @B+ @A) -

An element ((a]b)|(c|d) of (R|R)|(R|R) contains some special elements besides
its endpoints (a|b)(c|d) and (c|d)*((a|b)(c|d)). Itis a subset of R|R, and so consists
of a set of subsets of R. As the latter, its point set union can be taken, yielding a subset
of R. It is rather remarkable that doing so yields a coset, that is, 2n element of R|R, and
moreover that coset is in (a|b)|(c|d). We proceed now to verify all this.

Let (c|d)*((a]|b)(c|d) = (@|P). Since (a|b)(c|d) = (ac|a’b V c’dV bd), we have

o =abed vy

B=@bvc'dvbd)vy
where '

v=@bvc'dvbd)'d vc'd

=@ Vb vc'd
We also have
((a]|b)|(c|d) = R|R)YV (a]|b)c|d).
Indeed,
(a|B) = (@a]|b)-(c|d) VY.

Thus,

((a]B)|(c|d) = R|R)(a|b)(c|d) v 1) V (a] b)(c|d)

= R|R)(a|b)(c|d) V R|R)YV (a]b)(c|d)
= R|R)yV (a|b)(c|d).

The point of the equality ((a}d)|(c|d)) = R|R)yV (ajb)(c|d) is that there is a special
element ye R such that

R[R)YV (a|b)(c|d) = R|R)(c|d)*(a}b)c|d) V (a]b)(c|d).

Of course we are identifying y with (y]I). Now, for any set of subsets S of R, let
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U(S) denote the union of all the sets in S. Noting that

V(R |R)(x| 1)) = u{(a|b)(x|I) : (a]b) € R|R)
=U{(a + Rb")(x + RO) : (a|b) € R|R}
=u{(a+Rb')x: (a|b) € R|R)
= Rx,

-

and that for two sets S and T, U(S V T) =UYS) vuD), makes the proof of the following
theorem transparent.

Theorem 3. For a,b,c,de R,

Ul(a|b)|(c|d] = (ab|b(a’d’ ¥ cd)) € ((a|b)|(c|d)).
Proof. We have

Vl(@|B)|(c|d] = V[R|R)YV (a|b)c|d]
= UR[R)YV (a]b)(c|d)
= RyV (a|b)c|d)
= (0]7') v (a|b)(c|d)
= (abcd|abcd ¥ ¥’ (a’b V ¢’d V bd))
= (abed|b(a’d’ V cd)
= (ab|b(a’d’ v cad)).

To see that (ab|b(a’d’ V cd)) € ((a|b)](c|d)), simply verify that
(ab)b(a’d’ V cd))(c|d) = (a]|b)(c|d). o
One may view U as a binary operation on R|R, with

u((a|b), (c|d) = (ab|b(a’d’ V cd)).

Now Calabrese (1987) has defined a binary "conditioning" operation on R|R which is his
candidate for iterated conditioning. His operation is given by

(a]|b)o(c|d) = (ab|b(d” V c)) = (ab]b(d - c)).

As a simple check shows, it is nct true that
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((a]b)(c|a))o(c|d) = (a| b)o(c|a), . .)
while it is the case that
(a|b)c]d)|(cla) = ((a| B)|(c|d)),

and hence that

-

U(a|b)c|D|(c|d) = A(a]b)|(c| ).
However, when (z|b) < (c|d),
ULa]B)| ()] = (ablbla’d’ V cd))
= (ab|b(d’ V ) = (ab|b(d - c)).

Therefore, the binary operations U and Calabrese's "conditioning” operator on R|R
agree on pairs ((a]b),(c|d)) with (a]b) < (c]d).
If b=d=1,then U(a|c) = (a]c),so v isonto. If b =d, then
ul(a|b)|(c|b)] = (ab]bc) = (a]be) . .) |
If d=1 and b=c,then
Ul(a|b)|b] = (ab|b) = (a]b).

Thus U produces "compatible” solutions, at least in the special cases considered at
the beginning of this section. It is obvious that U preserves logical operations. Moreover,
the restriction of U : (RIR)|(R|R) 2 R|R to {(a]b)|(c|d):a, be R} isan isomorphism
for each pair ¢, € ¢ R. Also the resuiction to {(a]|b)|(c]b) : a, c € R} is an
isomorphism for cach b e R To prove these facts, only injectivity needs to be verified.
For the first, suppose

Vileri ) [{cja)] = ullaz |6 (c| .
By Theorem 3, we then have:

(b |by(ay"d" V cd)) = (agby|balar’d’ V cd)),
that is,

.\ j arhicd = axbycd @
(!

\ bifay"d Voed) =bofay’d’” Ved).

Since bied = abied V g’ bicd, (1) is 2quivalent to
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G ]L‘]_Cd = azbgcd
@ ,
A a;’bi{d-c) = a’byd~c).
Now
@] b)(c|d) = (abicd|a;’b; V ¢”d V bid)
= (abed |a;b,(d sc)Ve’dy bd)-
since

6BV e’dV bid = (@' B)C" D’ V ¢’V bid
=a’bd’ Ve)Vc'dvbd
=(g;’b)d-c)Vvc'dVbd.
Also, observe that
[(ai’b)(d~c) ¥ c'd] V bd
=[(a’b)d -+ c) Vc'dl v (bid)l(a"b)d = ©) V e’d)’
= [a;"bi(d -+ ) V ¢’d] V aibyed,

with the last union being a disjoint one.

Thus, (2) implies
(a11b1)(c|d) = (a2]|B)(c]a),

and hence
(@ |l (cld) = (a|bD](c]|d) .

To prove the second fact, suppose that

(a1 |15 (c1|B)] = Ul(az| )| (2] D)),

that is,
albc 1 |bc1) = (a2b02| bCp),
or
albcl = azbc2
|
bey = bCz

Now, (a;]b)(c;|b) = (a;bc;|b). Thus (3) implies that

(a1|5)e1]b) = (a2 b)(ca | D).
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Also, (3) implies that

(c1{B) = (c2|b),
and hence

(@b [(1]d) = ((az2]B)|(c2|B)). . o

8.2 Non-monotonic logics on conditionals

This section discusses non-monotonic entailment relations in conditional logic (CL).
In Chapter 6, the building block for a conditional probability logic (CPL) is the base space
R|R together with Lukasiewicz's three-valued logic. Conditional probabilities were
introduced into the analysis mainly for purpose of reasoning under uncertainty. Of course,
other uncertainty measures could be used instead of probability (sece for example,
Goodman, Nguyen and Rogers, 1990). This is basically a numerical approach to
reasoning with uncertainty in the sense that the uncertainty involved is taken into account
in a quantitative way. However, qualitative approach to reasoning can be carried out at
the level of CL. In view of the structure of R|R, qualitative notions will be compatible
with quantitative ones. The need to manipulate conditionals qualitatively is apparent in
problems such as combination of rules in expert systems. Our concem here is to extract
some non-monotonic aspects of CL as well as to discuss the possibility for building
non-monotonic entailment relations on R|R.

In the case of classical two-valued logic (C2), truth is the only primitive notion. As
stated in Section 6.3, the logical entailment relation k in C2 is defined in terms of
models (homomorphisms £ from R i {0, I}, or equivalently, maximal filters of R).
In turn, k is expressed in terms of the order relation < on R by b k a if and only if
b <a. Now, since for ce R, bc < b, we see that if bk a then for ce R, bcka. This
property of F is referred to as "monotonicity,” that is, roughly speaking, additional
evidence will not affect the validity of previous logical conclusions. In this sense, C2 is
called a monotonic deduction system, or the logic C2 is monotonic. In this case, the
monotonicity of k is due to the transitivity property of <. From an axiomatic approach
to entailment relations (for example, Gabbay, 1985), the monotonic bk satisfies

(i) reflexivity: for a,beR,abF a,
(i) monotonicity: if b F a, then for c € R, bc b a, and
(iii) transidvity (orcut): if abkc bk g, then bk c.

PL is also monotonic since probability is compatible with the order relation < on
R. To capture common sense reasoning, some form of "non-monotonic” deduction is

@
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desirable. Roughly speaking, an entailment relation k, in some logic, is non-monotonic if
in light of new evidence, previous logical conclusions may fail. Specifically, & is
non-monotonic if the monotonicity property (ii) above does not hold.  The
non-monotonicity of a logical system refers precisely to an entailment relation in it. Thus,
a logic can have both a monotonic entailment and a non-monotonic one.

Examine again the k in C,. In applications, given a sét of data {by; ... bn}, the
relation Fk is used to express the fact that some a follows logically from the data,
written )

{bI, v by} Fa.

There are two procedures in this deduction process. First, combination of evidence is
taken as “"conjuncticn” which is the ring multiplication. Second, b is defined as <. This
(partial) order relation on R is defined precisely in terms of A, via g, be R, b<a if, by
definition, « A b = b. Thus, in order to break the monotonicity of a system, one can either
consider combination of evidence differently or define k independently of <. We will
return to this issue shortly.

We proceed now to clarify the statement that "probabilistic reasoning captures a
form of non-monotonic reasoning.” We know that PL is monotonic. What makes
“"probabilistic reasoning” non-monotonic depends on the framework of inference. Suppose
we consider the (partial, quantitative) entailment of an event a from a collection of
events (b 77 b} as a conditional probability P(a]b g A A by), denoted
{b 1 by} ka with degree P(a|b g A by). In other words, this partial entailment
relation is non-monotonic. Note that the two primitive notions involved here are truth and
probability.

It is possible to express the above aspect of non-monotonicity in a qualitative
fashion. Indeed, in the CL (Chapter 6), we have (a]b)<(c|d) if and only if ab<cd
and c¢’d<a’b, and

CL
@|d) F (c|d)

is defined as
(a]b) < (c|d).

Now, (a]b) and (a]bc) are not comparable in general, since we always have abc < ab,
but not a’b<a’bc, in general. On the other hand, the structure of R|R is such that
probabilities are compatible with operations on R|R, in particular P preserves the
(partial) order relation < on R|R. Note also that, for the purpose of automation,
syntactic representation of k is desirable.

Now from R (base space of C,), we go to R|R (base space of CL). The tuth
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space of R|R is {0,u,l}. Note that, in the analysis of reasoning processes in Al,
three-valued logics often surface, for example, in Computation Theory (McCarthy, 1967),
in the semantics of non-monotonic entailment (Sandewall, 1989), and in modeling of
default rules (Dubois and Prade, 1390).

Since the truth-space of R|R is a three-element set, one can consider various logics
on R|R. In other words, the class of ail possible logics for R|R is that of all
three-valued logics. Theorem 2 of Section 3.4 established their correspondences with
logical operators and relations on R|R, that is, at the syntax level. Depending upon
interpretations of conditional objects and intuitive logical aspects of problems at hand,
different choices of three-valued logics can be made. For example, for reasoning in the
theory of computable partial recursive functions, non-commutative three-valued logics
might be appropriate (for example, Guzman and Squier, 1990; see also Section 3.4). Ina
direction related to quantum logic, non-distributive systems can be looked for (for
example, Schay, 1968). '

As far as commuiative three-valued logics are concerned, the standard literature is
summarized in Rescher (1969). As stated earlier, different choices of connectives for
three-valued logics (that is, truth tables) lead to different logical operators on R|R. Thus,
for example, Lukasiewicz, Sobocinski and Bochvar’s logics correspond respectively to our
operators in Chapter 3, Adams-Calabrese-Schay’s operators, and an altemative system of
Schay. (See Section 3.5; also Dubois and Prade, 1989, 1990).

Consider first the case of Lukasiewicz' logic on R|R, corresponding to operators
’, A, v of Chapter 3. Suppose data consist of conditional information, or conditionals are
viewed as production rules in expert systzms. A simple way to express the fact that the
conditional information (or rule) (e|f) follows logically from the data {a|b, (c|d)} isto
define F as {(a|bd), (c|d} F (| if and only if

(@alb) Ac|ld) < (elf) -

This deduction process is exactly the same as in the case of C,, and hence is monotonic.
As suggested by Dubois and Prade (1989), one way to destroy the monotonicity of k is
to modify it at the combination of evidence level. Instead of using LukasiewicZ'
conjunction A, one might replace it by another one, for example, Sobocinski's, (See
Chapter 3.) The reason is this. Since < on R|R isdefined as

(a]b) <(c|d) if and only if (a]b) A (c|d) = (a]b),

as on R, the uansitdvity of <, coupled with this definition, is responsible for the
monotonicity of k. If A is replaced by Adams-Calabrese-Schay's conjunction A o then
i-o is non-monotonic, where




s U
[ A}

i:”'&::l

aentmacal

ponsrorey o ety
kY - ‘e

Porsriits
.
[SERT )

praosarey
o

|

PO
c..-....a

Non-monotonic logics on conditionals 253

{(a]b), (c|d)} k, (e])

if, by definition,

(a}b) Ay (c|d) s (elf);

and where .

alb) A, (cld) = (b’ Va)d’ V )|b V d).

Indeed. suppose (a|b) < (e|f). By inspecticn, we séc that

(alb) A, (c]d) < (a}b)

does not hold, so that, in general, (e|f) might not follow from {(a|d), (¢|d)}.

Note that, in view of Theorem 1, Section 3.3, the order relation < on R|R can be
defined by (a|¥)s(c|ld) if abScd and c’d<a’b, that is, by using only the ring
structure of R, without calling upon A. For other order relations on R|R, see the recent
work of Caiabrese (1990).

Another way to modify k to obtain non-monotonicity is suggested by Sandewall
(1989). First, to define "partial interpretations,” Sandewall considered Kleene three-valued
base logic. By base logic, we mean truth tables of the three basic connectives "not,” "and"
and "or". This is the same as Lukasiewicz's three-valued base logic (Rescher, 1969, p.
34). The main difference between the two logics lies in the concept of implication. Thus,
in our setdng, R|R is equipped with operators ’, A, and V of Chapter 3. The logical
entaiiment relation is next defined by introducing a preference order on the set of models
(partial interpretations). For details, see Sandewall (1989). This is in line with the general
methodology advocaied by Hawthorne (1988) for building non-monotonic logics. To
2chieve non-menotonicity, one should generalize the classical concept of models by taking
more primitive notions than just "truth.” In Hawthorne's words "there is more to the
meaning of a sentence than the determination of truth-values at possible worlds.” One
should also take “t¢ntailment” as a primitive notion. Thgt means an entailment relation
should be autonomous with respect to truth-values semantics. Then, as in the case of
“truth” as 2 priraitive notion, once an entailment concept has been taken, one will specify
its "sexnantc tuler” (in the same way that tnich tables of logical connectives specify how
truth values of compound formulae are assigned) governing deduction processes. For an
axiomatic approach to nop-monotonic entailment relations, see Gabbay (1985). Recent

relevant papers on non-monotonic logics include Grosof (1988), Bibel (1986), McLeish
(1988).

.
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8.3 Operations on cosets of regular rings.

The algebraic sturctures more general than Boolean rings that are pertinent for our
considerations of conditional events, jterated conditionals, and so on, seem to be lattices of
some sort rather than more general rings. For example, in Chapter 4, we extended R,
which is both a Boolean ring and equivalently a Boolean 1attige, to the space R|R of
conditional events. This space is a Stone algebra, which is a lattice more general than a
Boolean lattice. It is not a ring. That is, R|R generalizes R as a lattice, not as a ring,
There is the possibility, however, of generalizing this process of going from R to R|R
by starting with a ring more general than 4 Boolean one. Now R|R is the set of all
cosets of principal ideals of R, and the operations between its elements were defined to be
those induced by the operations on R. Thatis,if A and B are subsets of R, and * is
any binary operation on R, then, by definition, A°B = {ab : a € A, b € B}. In the Boolean
ring case, addition and multiplication between cosets yielded cosets. In fact, for a, b€ R,
and ideals f and J of R,

@+h+@+N=(@+b)+JI+J),
and

@+nD-b+J)=ab+1Ib+al+1J.

These facts were thoroughly discussed in Chapter 3. These operations on K|R were the
basis of its development. While the set addition of cosets is a coset holds in any ring and
is easily verified, the fact that the set product of cosets is a coset is unexpected and
non-trivial. The question naturally arises as to the generality of this phenomenon. In
particular, for what rings does it hold? In this section, we will show that it holds for
commutative von Neumann regular rings. In Boolean rings, every element is an
idempotent, and these regular rings are good candidates for such an extension because of
the abundance of idempotents in them. Our principal result is Theorem 4, the extension of
Theorem 1 of Section 3.2 to these more general rings.

Definition 1. A commutative ring R is (von Neumann) regular if it has an identity, and if
foreach x € R, thereisa y e R such that xyx = x.

We will call these commutative von Neumann regular rings simply regular rings. Here
are some examples of regular rings:

(1) Any Boolean ring is a regular rine

(2) Any field is a regular ring.
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(3) The Cartesian product of any family of regular rings is a regular ring. The ring
operations in such a product are, of course, componentwise.

@) Quotients of regular rings are regular rings. Thatis, if R is a regular ring and
I is an ideal of R, then R/I is a regular ring.

(5) p-rings are regular rings. These are rings such that for some prime p and every

element x, px =0 and # =x. Boolean rings are those for which p =2.

For an cleﬁxent x in a regular ring, the element y such that xyx = ).2y =x isnot
unique since, for example, in a Boolean ring one may take y to be x or I, the element
xy isunique. We denote it x°.

Lemma 1. Let R be a regular ring. Then for all x € R,
() x° isunique,
(i) x° is an idempotent, and
(iii) Rx = Rx°.

Proof. For (i), if (xy)x = (xz)x =x, then xy.= xzxy = xz. For (i), (cp)(xy) =
(xyx)x = xy. Finally, for (iii), clearly RGY)cRx. I a=rxeRx, then
a = (x)(xy) € R(xy), whence Rx° = Rx. o

Theorem 1. Let R be a regular ring. The following hold.
() For any principal ideal Ra of R, Ra = Re for a unique idempotent e.
Gi) I =1 foranyideal I of R.
(iid) Ra2 = Ra for any ac¢ R.

(iv) Finitely generated ideals of R are principal.
(v) Forideals I and J of R,we have IJ = {ij:iel,je J} isanideal.

Proof. To prove (i), Ra = Ra® with a° idempotent by Lemma 1. If Re = Rf,
with e, f idempotents, then e = rf and f = se for suitable elements r and s of r, and
e=1rf=rse=rsef=f.

For (ii), clearly 1"Z cl. If iel, then i=i%¢ 12 . Now (iii) follows since

Raz = RaRa = Ra by (i). To get (iv), we need that Ra; + Rap + ... + Ra, = Ra for
some a € R. We may assume that each g; is idempotent. Now,

Ray + Ray = R(a) + a; - aya))
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since ay(ay + a3 - a1a7) = a; for i=1,2, whence Ra) + Ra; CR(a; + ap -ayay). The .)
other inclusion is easy.
Finally, to prove (v), IJ is closed under multiplication by any element @ of R
since a(if) = (@y with aiel jeJ. Weneed iy + ..+ iyjpelJ for iyel, jyelJ,
k=1, .., n. From (iv), let Rj; + Rja + ... + Rj, = Rj. Then

iy + . Figin = G + oo + (ry))

for suitable ry, k = 1, ..., n. o

The following is a characterization of regular rings in terms of products of cosets of
the same ideal.

Theorem 2. Let R be a commutative ring with identity. Then R is regular if and only if
the set product of any two cosets of an ideal 1 is the product of those two cosets as
elements of the quotient ring R/1. That is, R is regular if and only if

@+Dhb+Dh=ab+1

for each ideal I of R,and a,beR.

Proof. If the equality above holds, then taking a = b =0 yields 12=I for all
ideals I. Taking I =Rx gets RxRx=Rx=Rx2,sothat x=yx2 for some y in R.
Thus R isregular. Now assume that R is regular. We need

a@+Db+D=ab+1,
or that
{@+Db+):i,jel}={ab+ib+aj+ij:i,jel}
={ab+k:kel}.

Clearly, (a + D(b +I) ¢ ab + I. We need to write ab + k in the form ab +ib + aj + ij.
Letting { =k°(I - @) and j=k°a(k - b + ab) accomplishes that.

Note that Theorem 2 yields the ideal theoretic characterization of regular rings,

namely that a ring is regular if and only if 2 =7 for all ideals I. ‘
We now turn to the problem of showing that the set product of two cosets of ideals

of a regular ring is again a coset. Specifically, we will show that
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_.. (a+hb+N)=ab+al+bl+1J.
To do this, we investigate the quantity

Ka, b, LLN)={aj+bi+ij:iel,jeJ}.
We have .

_ @+Db+N=ab+al+bl+IJ=ab+K(a,b,1,1J).

In general, K(a, b, 1, J) is not an ideal of R. However, if we let

Ko(a,b,I,J)=o(IJ)+aJ+bI

where o(/J) denotes the ideal generated by 1J, then K o(a, b,1,J) is always an ideal,
and, moreover, we have:

JUSSIUIS Y
—esvonr

Lemma 2. Let R be a commutative ring with unit 1. Then for a,be R, and I, J ideals
of R,

i
, aJublcK(a, b I,J)cK (a b1, ])= oll) + K(a, b, L, J).
' Proof. Since 0 is in any ideal, it follows that

al v bl cK(a, b, 1, J).

[ . Next, if i el and je J, then ij € o(lJ), hence
1
s K@, b 1,))c Ko(a, b L.
. Clearly
I o)) + K(a, b, I,J) cK (a, b, 1, J).
;: Conversely, let k e o(lJ). We have
. aj +bi+k=(k-ij)+ (g + bi+ij)e olll) + K(a, b, I, )).
5 :
Lemma 3. Let R be a commutative ring with identity. The following are equivalent.
' () For a,beR, and I,J ideals of R,K(a, b,1,J) is an ideal.

(ii)y For a,beR,and I,J ideals of R,K(a, b, 1,]) = Ko(a, b, 1, ]).
(iify o(I)cK(a, b, I,J), for a,beR,and I,J ideals of R.
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Proof. That (ii) implies (i) is obvious. Assume (i). Then for i e I, j e J, we have
ij = (j + ja+ bi) - (ja+ bi)e K(a, b, 1, )),
since
aJcK(a, b, 1,)), bl cK(a, b,1,J). )
Thus (i) implies (iii). Assume (iii). In view of Lemma 2, it suffices to show that,
| K o(a, b,1,J))cK(a,b,1,J).
For this purpose, let aj + bi + ke K o(a, b,1,J). Then
aj + bi + k=(aj + bi +ij) + k-1

with k- ij € o(lJ). Now, by hypothesis, (iii) holds for any a, b in R. Thus taking
c=a+i,d=b+j,wehave o)) cK(c,d,1,J). Thatis, k-ij is of the form

(a+ 0jy + (b + iy + i)
for some i; € 1,j; € J. Hence .)
aj+bi+k=aj+bi+ij+(a+iy+®+ D+ iy
= a(f + jy) + b(i + iy) + ij + ijy + jiy + i)y
=a( +j)) + b + i) + (+ )G + j1) € K(g, b, 1, J). ]
Theorem 3. Let R be a regular ring. Then for a, be R, and ideals I,J of R,

@+Db+J)=ab+al +bl+1Je FRR).

Proof. By Theorem 1, o(J) = IJ. But IV =1nJ. Clearly, IJ cInJ. Conversely,
if aeInJ,thensince R isregular,

a=(aa®)acell.
Thusif relInlJ,

i=(rr°)(]-a)el, 0

j=@r)r-b+ab)eJ,
and
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r=aj+bi+ije Kb J),
so that

o) cK(a, b, I, ).

In view of Lemma 3, we then have

-

K(a,b,I,J):Ko(a,b,I,J)=aJ+bI+IJ. o

We have just seen that if R is a regular ring, then set-extenstion operations of
addition and multiplication are operators on the space J(R) of all cosets of R, extending
coset operations on each fixed quotient ring. Of course, by Theorem 2, this property is
unique to regular rings. However, it is not known which rings have the property that
products of cosets are cosets, or indeed if having this property is unique to commutative
regular rings.

To extend Theorem 1 of Section 3.2 to regular rings, we define analogs of “ and Vv
for regular rings. For a, b e R, let

and
aVb=a+b-ab.

These operations are extended to subsets of R asusual. For A, BCR,
A’={l-a:aceR)},
AVB={a+b-ab:ae A beB}.

One should note that AV b is not
A+B-AB={a+b-cd:a,ceAb,deB}.
However, DeMorgan laws do hold.
(AB)" = A" VB,
(AVB) =A’'B’.

The following theorem is a generalization of Theorem 1 in Section 3.2.
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Theorem 4. Let R be a regular ring. Then for a,b e R, andideals I,J of R,

@ @+D+@G+N=@+bo)+T+J),

@) @+D-(b+J)=ab+al+bl+1,

i) @+’ =a’ +1,

@) @+DvV@+N)=aVb+ (@' J+bI+1)).

Proof. (i) and (ii) have been proved previously. (iii) is easy. For (iv), we use one
of the DeMorgan laws above and (ii). We have
@+DVE+I)=(a" +DO" +J)
=1-@@b’ +a’J+b'I+1)
=aVb+a'J+b'I+1J. o
The difficult part of Theorem 4 is (ii). It was proved by inspecting the quantity
K(a, b, I, J). There is a more direct proof, which goes as follows. First, assume that [/

and J are principal ideals. Let I= Re, J = Rf with e, f idempotents. It suffices to
solve the equation

ij + ib + ja = iyj; + i + joa
for iel, je J, where iy, i3 €1, jy, jo € J. Letting
i=(x-a)f+ il -fe,
j=U-bef+jo( - &f

where x = iy + iob + joa + ab, yields a solution.

For the general case, by Theorem 1, the ideal Ri + Rij + Ri; is a principal ideal
Re, and Rj + Rjy + Rj, is Rf with e, f idempotents. Thus, the principal ideal case
finishes the proof. o

’

There are other analogs for and V on a regular ring than the ones we defined

above. An alternative is this. In analogy with the Boolean case, define, for @, b € R,
(a|b) = {x e R : xb = ab}.
Then, assuming throughout that R is regular,
(a|b) = a+ R(I - b°).

Indeed, first observe that
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a+ R - b°) = ab® + R(I - b°).
This can be seen as follows. If x € a + R(I - b°), then

x=a+r(l-b°
=a(l -b°+b°)+r(I-b°) -
=ab® + (a+n( - b°

which is in. ab® + R(I - b°). Conversely, for x = ab° + s(I - b°),

x=a( -1+b° +s{-b°
=a+(s-a)l-b°
whichisin a + R(I - b°).

Now let x e (a|b), that is, xb = ab. Multiplying through by ° yields xb° = ab®.
Thus

x=x(1-b°+b°)
=x(I - b°) + xb°
=x(1 - b°) + ab®,
which is in
ab® + R(I - b°) =a + R(I - b°).
Conversely, if x = ab° + r{(I - b°) for some r e R, then

xb = ab°b + (I - b°)b = ab. o

The fact that {x € R : xb = ab} = a + R(I - b°) rather than a + R(I - b) suggests
that one might want to define ” on regular rings by @’ = I - a° ratherthan 1 -4. In
that case, in order for DeMorgan's laws to hold, and in analogy with the Boolean case, one
should define V by

aVb=(a’ Ab") =(@’b")’
= (-1 -5’
=1-(I-a°-b°+ a’b°)°

=a° + b° - g°°.
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With respect to these operations, a regular ring R satisfies the following properties.

(1) a(abVac)=abVac and ab¥c=(aVc)bVc)
(2) avb)’ =a’b’ and (ab)’ ={a’" ¥V ¥’).
(3) e(favb)=a and aVab=a. .

The verification of these properties is completely routine. The upshot of property (I) is
that v distributes over products, but not the cther way around. Property (2} asserts that
DeMorgan's laws hold. Property (3) is one absorption law, and the failure of the other.

There does not seem to be a way to define a partial order < on R in terms of
these operations so that R is a lattice. In fact, defining < by a<b if a=ab, orif
a=ab°® does not yield a partial order. Anti-symmetry is not achieved. For example, for
the case a<b if and only if a = ab®, if a<b,and b<a,then a°® =b°%but a#b
unless @ and b are idempotents. Thus, this alternate definition of ”,and consequently of
V, on R, utilizing more heavily the idempotent part of R, does not result in a particularly
tractable algebraic system on which to base a logic.

It is instructive to see what Theorem 4 becomes with these alternate definitions of *
and V. Of course parts (i) and (ii) do not change. Some properties of these new
operations when extended to cosets follow. Properties (5) and (6) are the analogs of parts
(iii) and (iv) of Theorem 4 are these.

@) (a+Rb)Y° =RV +a°b’.
(5) (@a+Rb) =R°° +a’b’.
6) (@+Rb)V(c+Rd)=R°(bdVa’dVbc’)+ (@’ Vcd).

To give a better appreciation of the analogs, we present a proof of (5). If x is an
element of a regular ring R, then there is an element y such that xyx =x. Denote such
an element by xt. Thus xix =x°. Now note the following equalities.

a+b=a+bb°=ab’ +(a+b)b°,

(@tb°” + (a + b)) ab®’ + (a + b)b°) = a°b°’ + (a + b)°b°,

and

(@°b°’ + (a + b)°b°){ab®’ + (a+ b)b°)=a +b.
Thus

(@ + b)° =a°h°" + (a + b)°p°.
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(@+Rb)" =R°° +a’b’.
We have
@+rb)’ =1-(@+rb)y° .
=1 - a°(°b°)’ - (a + rb)°r°b°
=1 - a° + a®r°b°- (a + rb)°r°b°
=1-a°-b°+a®® +b° - a°b° + a°r°b° - (a + rb)°r°b°
=(I -a°)1-b°) +(I-a°-a°"° - (a+rb)°r*)b°.
It is readily checked that the quantity
1-a°-a°"°-(a+rb)°r)
is idempotent, so we have the inclusion
(@+Rb)’ cR°° +a’b’.

Now let eb® + a’b’ € R°b° + a’b’, with e idempotent of course. It suffices to
solve the equation

eb® +a’b’ =1 - (a+sb)°,

or the equation
(@ +5b)° =a°(I - b°) + (I - e)b°
for s. Setting
x=a’(l-b°)+ (1 - e)b°,
and noting that x is idempotent, means that we need s such that

x(a + sb) = (a + sb),
and

x =Yy(a + sb)
for some y. Letting

= - abt + (I - e)bt
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and
y=at(l-b°) +5°(I -¢e)

does the trick.

For further work on developing algebraic properties fo;' conditionals on regular
rings, see Goodman and Nguyen (1990).

8.4 Miscellaneous issues and open problems

It is time to summarize our work and to discuss open problems.

The topic of conditioning is perhaps very old since it is central to empirical sciences.
However, the concept of "measure-free” conditioning has not been studied seriously due to
a lack of motivation. It is the fundamental aspect of probabilistic inference in expert
systems that motivated us to look again at this topic and to formulate a rigorous theory of
conditioning.

The subject of probabilistic inference in expert systems has attracted considerable
attention among researchers in artificial intelligence and has caused much discussion.
Several fundamental ideas and methodologies relating to conditioning have been proposed,
most of which were highly appealing on common sense grounds. However, serious
foundational problems have been encountered, as has been the case in many other areas of
science. Accordingly, clarification of conditioning at the basic level is necessary. The
purpose of this monograph is to introduce a rigorous theory of measure-free conditioning
which can be utilized in inference procedures in intelligent machines. The theory
developed here concerns mzinly basic mathematical objects such as ordinary sets and
probability measures. It can be regarded as a first step that will lead to extensions in
various directions of interest.

Basically, this work is an effort to provide a better understanding of the logics of
condidonals. It is an attempt to bring conditonal logic closer to the level of
underst.nding as that of classical logic. Such an understanding is needed since more and
more Al techniques rely on formal methods in logic to guide programming in intelligent
machines. Logics can be viewed as knowledge representation languages in which facts,
rules, and inference can be stated and manipulated.

Uncertainty modeling is a tricky business in AI. Unlike the term "conditionals” used
in classical two-valued logic. where "concitional” is referred to as material implicaton,
conditionals or implicative staternents used in this text need to be modeled properly in the
context of reasoning with uncertainty. A "measure-frec” approach seems to be the most
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objective way to lay the first brick. However, we are all biased by the popilar approach
to uncertainty modeling, namely, probability theory, in which there is a fundamental
concept of probabilistic conditioning. We have tried to revise the work of others
concerning conditioning concepts to be compatible with probability theory. We provided
an axiomatic approach to conditionals, and built a conditional logic. This should stimulate
further work to improve it and to extend it towards applications. In a time of fast
advances in Al technologies, we hope that it is useful to have a monograph on the subject,
even at a tentative level. Many issues remain to be re-examined and much further work is
needed. We now discuss some of these issues and some open problems.

A. Conditionals on more general algebraic systems

The axiomatic approach in Chapter 2 led to the coset form for conditionals on
Boolean rings. This mathematical representation of implicative statements is satisfactory
in the sense that it reflects earlier thoughts on the concept of conditioning in logic, and
coincides with that derived from other work on the subject. There are a number of elegant
characterizations of conditional prcbability without any reference to conditional events,
such as Aczel's generalization of Renyi axioms (Aczel, 1966) or Cox's approach (Cox,
1961). However, DeFinetti (1974) and, more generally, Lindley (1982), characterized
conditional probability via the "Dutchbook,” or equivalently, uncertainty decision game.
This does use (tacitly) DeFinetti's conditional event indicator function (see also Goodman
et al (1990) for a modification of certain of Lindley's conclusions conceming the
inadmissibility of uncertainty measures). In connection with these results, it is of some
interest to attempt to relate all of these characterizations with the standard probability
evaluation we use, namely P((a|b)) = P(a|b).

The next problem has been: once the concrete conditional space R|R is obtained,
what are the logical operators on it? From a "syntax” viewpoint, this is an extension
problem. The operations on the Boolean ring R need to be extended to operators or
R|R which capture, in some reasonable sense, aspects of combination of evidence in
ruled-based systems. In Chapter 3, the approach is algebraic. It is motivated by an
interesting problem in ring theory, namely, how to extend appropriately coset operations
on each quotient ring of R to R|R? It turns out that set-extension operations provide a
natural solution to this extension problem. In this way, R|R becomes a Stone algebra
(Chapter 4).

All that was donc for Boolean rings, for mathematical interest as well as for
applications.  Conditionals on more general algebraic stuctures now need to be
investigated. In Chapters 7 and 8, we have touched upon two generalizations: fuzzy sets
and regular rnings.
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In carrying out the construction of R|R from R for R a commutative regular ring
rather than a Boolean ring, problems arise. We can certainly let R|R be the set of all
cosets of principal ideals of R. But just how they should manipulated in order to provide
suitable generalizations of the Boolean case is not settled. It is not totally clear what a
conditional event should be in this context. Should (a|b) be the coset a + R(I -b) or
the coset a + R(I - b°)? In either case, since products and sums of cosets are cosets, they
can be added and multiplied, but there are choices to be made for “ and V. As
mentioned earlier, it seems not to be known which rings have the property that products of
cosets are cosets, and of course we are only considering the commutative case.

B. Three-valued logics of conditionals

Various open issues have been suggested by Schay (1968, p. 343-344) as far as
R|R, viewed as the space of generalized (three-valued) indicator functions, is concerned.
Viewing the conditional space R|R as some specific algebraic structure, for example, as
a Stone algebra, "probability-like” measures on it should be formulated in a more thorough
measure theoretical basis. This is somewhat similar to the situation in quantum
probability (see, for exmple, Gudder, 1988) in which the domain of a generalized measure
is an algebraic structure slightly more general than the usual concept of o-algebra, namely
a ¢-adaitive class.

On the other hand, one might ask what would R|R be, as an algebraic structure, if
instead of using Lukasiewicz's three-valued logic (corresponding to logical operations on
R|R as developed in Ciapter 3), one started with eitker Schay's first or second system, or
with Sobocinski's or Bochvar's three-valued logic?

In Chapter 2 we established the conmection between logical operations on the
conditional space R|R and truth tables in three-valued logic. It might be interesting to
explore the situation in n-valued logics (n > 3). Logical operators on R|R, as developed
in Chapter 3, lead to a well-known three-valued logic, namely that of Lukasiewicz. The
algebraic structure of R|R so obtained is a modification of Koopman's nen-totally
comparable conditional qualitative probability structure, (Koopman (1940, 1964)).
Referring to the excellent analysis and summary by Fine (1973, p. 183-196), the order
relation on R|R, as defined in Chapter 3, can be seen to satisfy essentially all but two of
Koopman's axioms. Additional work should be carried out for this aspect of conditional
event algebra, and should focus on the basic equivalence (not just implication) between
the partal order on R|R and the numerical partial order on corresponding conditional
probabiliies. By proving that there is a bijection between the class of all three-valued
logics and logical operators on R|R, the search for operators en  R|R might begin by
examining the class of all possible three-valued logics. For example, it tuns out that
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Schay's system of logical operators on R|R corresponds to Bochvar's three-valued logic,
while Schay's other systtem (as well as Adams' and Calabrese's) corresponds to
Sobocinski's. This should be viewed as a healthy situation in reasoning with uncertain
conditional data, rather than a divergence of opinion. This is similar to the debate about
choices of uricertainty measures in Al and to the cheice of logical systems in fuzzy logic.
For the latter, each logical system in fuzzy logic is modeled by a triple (N, T, S), where
N is a negation operator, T is a -norm and § its dual #-conorm. The art of modeling is
delicate. For example, based on three-valued logic, a form of fuzzy conditionals was
adopted in Chapter 7. The choice of th= copula min was suggested since it is the simplest
one. Other choices can be motivated on an empirical basis. For exzmple, if "conjunction”
is to be modeled mathematically in a given problem, and if there is some randomness
involved in the gathered datu, one can pick a copula for a  ~orm, and view the modeling
problem as a non-parametric statistical estimation problem, and estimate the joint
distribution function from data on marginals.

This seems appropriate in problems such as modeling activation functions in neural
networks. Indeed, basically the architecture of an artificial neural network can be placed
within the theory of approximations of fuactions of sevzral variables. (See, for example,
Lorentz, 1966.) More specifically, it is related to K. Imogorov's theorem on representation
of functins of several variables by superpositions of furctions of fewer variables (Lorentz,
1966, chapter 11, or Vitushkin, 1978). As such, statistical estimation procedures for
<emi-parametric models can be used as learning rules. It is interesting to note that the
popular back-propagation training algorithm in neural networks bears some close
relationship with backfitting procedures in projection pursuit regression (see Huber, 1985).
It seems that a fundamental question in the field of neural networks is this. Given a class
of functions, not necessarily completely specified, how to design an efficient artificial
neural zetwork to "process” any member of this class?

In a recent personal communication, Hestir (1990) showed that extreme points of the
spece of copulas (identified as probability measures on the unit square with uniform
marginals) can be characterized, so that e above estimation problem might be feasible.
The space oi copulas is a compact, convex space with the topology of weak convergence
of measures.

C. Nor-monotonic entailments on conditionals

When probability is used as a: quantification of unceriainty, an extension of
Probability Logic is needed for R|R. The vesulting logic is called a Conditional
Probability Logic \Chapter 6). Conditional Probability Logic should be extended from
sae sentential levei to first order predicate calculus.
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At a pragmatic level, non-monotonic entailment relations need to be specified as far
as common sense reasoning is concerned. Sotae aspects of this problem were discussed in
this Chapter. This difficult and important issue in mathematical logic should be further
investigated. See also the recent work of the group Lea Sombe (1990).

D. Higber order conditioning

-

Once conditionals on Boolean rings are defined, it is natural, at least from a
mathematical standpoint, to consider conditionals of conditionals. See, however, Pfanzagl
(1971). In Chapters 7 and 8, we have touched upon this problem, both from the syntactic
and semantic viewpoints.

The material in Section 8.1 is incomplete. Conditionals are defined on the space
R|R, yielding the space of iterated conditionals (R|R)|(R|R). The basic result is
Corollary 1 in that section, asserting that they consist of intervals in the Stone Algebra
R|R. This relied heavily on the fact that R|R is relatively pseudo-complemented. This
relative pseudo-complementation played the role of material implication. There, we also
touched on a way to assign "probabilities” to these iterated conditionals. An algebra of
these iterated conditionals has not been developed. No binary or unary operations on
(R|R)|(R|R) were defined and investigated. Much work remains to be done to clarify
the issue and to obtain a more satisfying theory of higher-order conditioning. Doing so
could be rewarding, and result in a tractable an important algebraic system, not only for its
modeling of higher order conditioning, but for its possible connections with higher order
logics.

E. Fuzzy conditionals and probability qualification

In view of the success of fuzzy logic in Al, we have devoted the entire Chapter 7 to
the extension of ordinary conditionals to the fuzzy case. Our semantic approach to fuzzy
conditionals is novel. It is motivated by a connection between membership functions and
random sets, namely randomization of level-sets associated with membership functions of
fuzzy sets. The simplest copula min was chosen to define membership functions of fuzzy
conditionals, which turn out to be interval-valued fuzzy sets. As in fuzzy logic, other
choices of copulas are possible. It might be of interest to compare fuzzy conditionals as
perceived here with various concepts of conditional possibility distributions in the
literature.  Also, inference with fuzzy conditionals, for example fuzzy implication
operators, should be investigated further for applications. See, for example, Smets, 1990;
Goodman, 1990.
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F. Modal logic

Since conditioning was shown not to be just a primitive concept, best described by
axioms, but rather can be analyzed further through the power class structure of the space
of conditionals, one can inquire whether other model forms (see, for example, Rescher,
1968) can be analogously investigated, including deontic, alethic and voluntative modes,
among others. This could use reduction of such forms to conditionals, using a synthetic
approach as in the analysis of the latter, not a top-down external approach as taken by
Palmer (1986) nor the formal logical stand of Searle and Vanderveken (1985). See also
Ruspini (1989).

G. Non-additive uncertainty measure

As mentioned several times in this monograph, especially in Chapter 5, conditionals,
as cosets of Boolean rings, were derived under the condition of compatibility with
conditional probability. Here, Lewis' Triviality Result plays an important role. It is clear
that this result depends heavily on the additivity property of probability measures. If
probability measures, viewed as set functions, are generalized to, say, Dempster-Shafer’s
belief functions, which are non-additive set functions, then Lewis' Triviality Result does
not hold. Indeed, as pointed out in Chapter 5, material implication on Boolean rings is
compatible with conditional belief assignments. Belief functions are not the only
non-additive set functions considered in the literature of artificial intelligence. Fuzzy
measures (for example, Sugeno, 1974), or decomposable measures with respect to
t-conorms (for example, Weber, 1984) are non-additive set functions. Although, in many
cases, non-additive measures can be transformed into additive ones, in the spirit of
Lindley's admissibility (Lindley, 1982; Goodman, Nguyen, and Rogers, 1990), an analysis
of conditional events compatible with a given class of uncertainly measures might be of
interest, as a way to specify, at the syntex level, the "non-standard" logics underlying the
semantic aspects when reasoning with various types of uncertainty.
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